12属现生灵长类第1跖骨的相对尺寸

陆涛 景朋 张梦楠 霍秀丽 杜抱朴 高艳

解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 730-737.

PDF(2268 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2268 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 730-737. DOI: 10.16098/j.issn.0529-1356.2025.06.013
人类学

12属现生灵长类第1跖骨的相对尺寸

  • 陆涛1 景朋2 张梦楠1 霍秀丽 2 杜抱朴1* 高艳1,2 
作者信息 +

Relative dimensions of the first metatarsals within 12 extant primates

  • LU Tao1  JING  Peng2  ZHANG  Meng-nan1  HUO Xiu-li2  DU Bao-pu1*  GAO Yan1,2 
Author information +
文章历史 +

摘要

目的 探讨现生灵长类第1跖骨尺寸相对分布状况。    方法 选取12属现生灵长类的135例第1跖骨标本,测量跖骨线性指标、关节面表面积、跖骨干截面面积、跖骨表面积和体积等指标并计算相关指数,使用基于均值的对应分析和主成分分析方法观察第1跖骨相对尺寸在现生灵长类的分布状况。    结果 美狐猴、大婴猴、卷尾猴和树熊猴有较高的跖骨比表面积,且树熊猴具有较低的关节面指数。冕狐猴、疣猴和猕猴具有较低的跖骨干粗壮度、跖骨干截面面积/跖骨底关节面表面积和跖骨底关节面指数。长鼻猴具有较高的关节面指数。猩猩、黑猩猩、大猩猩和现代人具有较高的跖骨干粗壮度和较低的跖骨比表面积。从主成分分析结果来看,12属现生灵长类大致可分为两组:第1组包含猩猩、黑猩猩、大猩猩和现代人,其中现代人亦可与现生大猿相区别;第2组包含美狐猴、大婴猴、树熊猴、冕狐猴、卷尾猴、疣猴、猕猴和长鼻猴。    结论 第1跖骨相对尺寸分布可为现生灵长类分类提供一定参考依据,但难以将其与特定的运动方式或足部抓握能力建立明确的关联。

Abstract

Objective To investigate the size variation in the first metatarsal of extant primates.    Methods In this study, we analyzed 135 first metatarsal specimens across 12 primate genera, quantifying eight linear measurements, articular surface areas, mid-shaft cross-sectional area, total surface area, volume, and derived indices. Multivariate patterns were assessed through mean-based correspondence analysis and principal component analysis (PCA).    Results Eulemur, Otolemur, Cebus, and Perodicticus exhibited a relatively high metatarsal surface-area-to-volume ratio. Perodicticus additionally showed a low articular facet index. Propithecus, Colobus, and Macaca displayed lower values for metatarsal shaft robusticity, the ratio of shaft cross-sectional area to base articular surface area, and the proximal articular facet index. Nasalis possessed a relatively high articular facet index. Pongo, Pan, Gorilla, and Homo sapiens were characterized by higher metatarsal shaft robusticity and a lower metatarsal surface-area-to-volume ratio. Principal component analysis revealed that the 12 extant primate genera could be broadly divided into two groups. Group 1 comprised Pongo, Pan, Gorilla and H. sapiens, although H. sapiens formed a distinct cluster relative to the extant great apes. Group 2 included Eulemur, Otolemur, Perodicticus, Propithecus, Cebus, Colobus, Macaca and Nasalis .   Conclusion The relative sizedistribution of the first metatarsal provides some reference value for classifying extant primates. However, it demonstrates no clear correlations with specific locomotor patterns or foot grasping ability. 

关键词

第1跖骨 / 相对粗壮度 / 运动方式 / 分类 / 表面积 / 测量 / 主成分分析 / 现生灵长类

Key words

First metatarsal / Relative robusticity / Locomotor patterns / Classification / Surface area / Measurement / Principal component analysi / / Extant primate

引用本文

导出引用
陆涛 景朋 张梦楠 霍秀丽 杜抱朴 高艳. 12属现生灵长类第1跖骨的相对尺寸[J]. 解剖学报. 2025, 56(6): 730-737 https://doi.org/10.16098/j.issn.0529-1356.2025.06.013
LU Tao JING Peng ZHANG Meng-nan HUO Xiu-li DU Bao-pu GAO Yan. Relative dimensions of the first metatarsals within 12 extant primates[J]. Acta Anatomica Sinica. 2025, 56(6): 730-737 https://doi.org/10.16098/j.issn.0529-1356.2025.06.013
中图分类号: R322    G804.49   

参考文献

 [1] Ding ShH. Human Osteological Research[M]. Beijing: Science Press, 2021: 37-40.(in Chinese) 
丁士海. 人体骨学研究[M]. 北京:科学出版社,2021:37-40.
 [2] Wunderlich RE. The primate forefoot[A]. In: Zeininger A, Hatala KG, Wunderlich RE, et al (eds). The Evolution of the Primate Foot: Anatomy, Function, and Palaeontological Evidence[M]. Switzerland: Springer Nature Switzerland AG, 2022: 73-109.
 [3] Fernández PJ, Alm cija S, Patel BA, et al. Functional aspects of metatarsal head shape in humans, apes, and Old World monkeys[J]. J Hum Evol, 2015, 86: 136-146.
 [4] Tomizawa Y, Nakatsukasa M, Ponce de Len MS, et al. Shaft structure of the first metatarsal contains a strong phylogenetic signal in apes and humans[J]. Am J Biol Anthropol, 2024, 185(1): e24987.
 [5] Jacobs RL, Boyer DM, Patel BA. Comparative functional morphology of the primate peroneal process[J]. J Hum Evol, 2009, 57(6): 721-731.
 [6] Komza K, Skinner MM. First metatarsal trabecular bone structure in extant hominoids and Swartkrans hominins[J]. J Hum Evol, 2019, 131: 1-21.
 [7] Patel BA, Seiffert ER, Boyer DM, et al. New primate first metatarsals from the Paleogene of Egypt and the origin of the anthropoid big toe[J]. J Hum Evol, 2012, 63(1): 99-120.
 [8] Goodenberger KE, Boyer DM, Orr CM, et al. Functional morphology of the hallucal metatarsal with implications for inferring grasping ability in extinct primates[J]. Am J Phys Anthropol, 2015, 156(3): 327-348.
 [9] Patel BA, Yapuncich GS, Tran C, et al. Catarrhine hallucal metatarsals from the early Miocene site of Songhor, Kenya[J]. J Hum Evol, 2017, 108: 176-198.
 [10] Zhao XJ, Wang XL, Dang XY, et al. Sex differences in the length ratios of metapodials in Macaca mulatta from the Taihang mountains[J]. Acta Anatomica Sinica, 2009, 40(6): 1001-1004.(in Chinese) 
赵晓进,王训练,党晓云,等. 太行山猕猴掌骨和跖骨长度比率的性别差异[J]. 解剖学报,2009,40(6):1001-1004.
 [11] Mao XJ, Wang FCh, Hu FX, et al. Sex dimorphism of metatarsal of Macaca Mulatta[J]. Journal of Xinyang Normal University (Natural Science Edition), 2014, 27(4): 520-524.(in Chinese) 
毛晓静,王凤产,胡凤霞,等. 太行山猕猴跖骨性差[J]. 信阳师范学院学报(自然科学版),2014,27(4):520-524.
 [12] Du BP. Sex and side related differences of diaphyseal cross sectional morphology in the first metatarsals of gorilla[J]. Capital Food Medicine, 2024, (15): 11-14.(in Chinese) 
杜抱朴. 大猩猩第1跖骨骨干截面形态的性别和侧别差异[J]. 首都食品与医药,2024,(15):11-14.
 [13] Liu Y, Antonijevic'D, Li R, et al. Study of sexual dimorphism in metatarsal bones: geometric and inertial analysis of the threedimensional reconstructed models[J]. Front Endocrinol (Lausanne), 2021, 12: 734362.
 [14] Zhai D, Fu XB, Tian Y, et al. Bilateral asymmetry in the metacarpals and metatarsals of the macaque[J]. Journal of Henan Normal University (Nature Science Edition), 2011, 39(6): 119-122.(in Chinese) 
翟頔,付香斌,田原,等. 太行山猕猴掌骨和跖骨的不对称性[J]. 河南师范大学学报(自然科学版),2011,39(6):119-122.
 [15] Gibelli D, Poppa P, Cummaudo M, et al. Sex assessment from the volume of the first metatarsal bone: a comparison of linear and volume measurements[J]. J Forensic Sci, 2017, 62(6): 1582-1585.
 [16] Zipfel B, Kidd R. Hominin first metatarsals (SKX 5017 and SK 1813) from Swartkrans: a morphometric analysis[J]. Homo, 2006, 57(2): 117-131.
 [17] DeSilva J, McNutt E, Benoit J, et al. One small step: a review of Plio-Pleistocene hominin foot evolution[J]. Am J Phys Anthropol, 2019, 168(S67): 63-140.
 [18] Marchi D. The cross-sectional geometry of the hand and foot bones of the Hominoidea and its relationship to locomotor behavior[J]. J Hum Evol, 2005, 49(6): 743-761.
 [19] Platt ML, Ghazanfar AA. Primate Neuroethology[M]. New York: Oxford University Press, 2010: 31-63.
 [20] Fleagle JG. Primate Adaptation and Evolution[M]. San Diego: Academic Press, 2013: 1-2.

PDF(2268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/