地黄多糖联合碱性成纤维细胞生长因子诱导骨髓间充质干细胞向心肌细胞分化

梁伟虹 杨慧颖 徐新茹 孙浩丹 吕洋 王海萍

解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 681-687.

PDF(3533 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(3533 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 681-687. DOI: 10.16098/j.issn.0529-1356.2025.06.007
细胞和分子生物学

地黄多糖联合碱性成纤维细胞生长因子诱导骨髓间充质干细胞向心肌细胞分化

  • 梁伟虹1,2 杨慧颖1,2 徐新茹1,2 孙浩丹1,2 吕洋1 王海萍1,2*
作者信息 +

Differentiation of bone marrow mesenchymal stem cells into cardiomyocytes induced by rehmannia glutinosa polysaccharide combined with basic fibroblast growth factor

  • LIANG  Wei-hong1,2  YANG  Hui-ying1,2  XU  Xin-ru1,2  SUN  Hao-dan1,2  LÜ  Yang1  WANG  Hai-ping1,2*
Author information +
文章历史 +

摘要

目的 探讨地黄多糖(RGP)与碱性成纤维细胞生长因子(FGF-2)单独或联合预处理对骨髓间充质干细胞(BMSCs)向心肌样细胞分化的影响及其相关机制。    方法 FGF-2和RGP单独或联合预处理BMSCs后培养至第 1、2和4周时,Real-time PCR检测NKx2.5和GATA-4的表达水平,培养至第4周时,Western blotting、免疫细胞化学、免疫荧光检测心肌特异性蛋白表达水平。FGF-2与RGP分别单独与PI3K/Akt信号通路抑制剂LY294002联合预处理BMSCs,培养至第4周时,Western blotting检测心肌特异性蛋白及相关通路蛋白的表达水平。    结果 FGF-2、RGP单独预处理均可提高心肌特异标志物的表达,FGF-2和RGP联合预处理组提升效果更为明显(P<0.05)。与单独使用FGF-2或RGP预处理相比,LY294002联合FGF-2或RGP预处理可显著下调BMSCs心肌特异性蛋白表达水平,并抑制Akt磷酸化(P<0.05)。    结论 FGF-2和RGP预处理均可调控PI3K/Akt信号通路诱导BMSCs向心肌细胞分化,两者联合预处理的诱导效果更佳。 

Abstract

Objective To explore the effects of pretreatment with rehmannia glutinosa polysaccharide (RGP) and basic fibroblast growth factor (FGF-2) alone or in combination on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into cardiomyoid cells and the related mechanisms.    Methods BMSCs pretreated with FGF-2 and RGP alone or in combination were cultured for 1, 2, and 4 weeks. The expression levels of NKx2.5 and GATA-4 were detected by Real-time PCR. BMSCs pretreated with FGF-2 or RGP alone and PI3K/Akt signaling pathway inhibitor LY294002 were used to detect the expression levels of myocardial specific proteins and related pathway proteins by Western blotting.    Results Compared with the blank control group, pretreatment with FGF-2 or RGP alone increased the expression rate of myocardial specific markers, and the effect of combined pretreatment with FGF-2 and RGP was more obvious (P<0.05). Compared with pretreatment with FGF-2 or RGP alone, pretreatment with LY294002 combined with FGF-2 or RGP significantly down-regulated the expression of cardiac-specific proteins in BMSCs and inhibited the phosphorylation of Akt (P<0.05).    Conclusion Both FGF-2 and RGP can induce BMSCs to differentiate into cardiomyocyte-like cells by regulating PI3K/Akt signaling pathway, and the combination of FGF-2 and RGP has a better inductive effect.  

关键词

地黄多糖 / 碱性成纤维细胞生长因子 / 磷脂酰肌醇-3激酶/蛋白激酶B / 骨髓间充质干细胞 / 免疫印迹法 / 大鼠

Key words

Rehmannia glutinosa polysaccharide
/ Basic fibroblast growth factor / Phosphatiolylinositol 3-kinase/protein kinase B / Bone marrow mesenchymal stem cell / Western blotting / Rat

引用本文

导出引用
梁伟虹 杨慧颖 徐新茹 孙浩丹 吕洋 王海萍. 地黄多糖联合碱性成纤维细胞生长因子诱导骨髓间充质干细胞向心肌细胞分化[J]. 解剖学报. 2025, 56(6): 681-687 https://doi.org/10.16098/j.issn.0529-1356.2025.06.007
LIANG Wei-hong YANG Hui-ying XU Xin-ru SUN Hao-dan LÜ Yang WANG Hai-ping.
Differentiation of bone marrow mesenchymal stem cells into cardiomyocytes induced by rehmannia glutinosa polysaccharide combined with basic fibroblast growth factor
[J]. Acta Anatomica Sinica. 2025, 56(6): 681-687 https://doi.org/10.16098/j.issn.0529-1356.2025.06.007
中图分类号: R329.2   

参考文献

 [1] Barrère-Lemaire S, Vincent A, Jorgensen C, et al. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing [J]. Physiol Rev, 2024, 104(2):659-725.
 [2] Wang  QM, Liu Y, Lü Y, et al. Promoting effect of bFGF and IGF-1 on the differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells and its related mechanism [J]. Chinese Pharmacological Bulletin, 2023, 39(4):715-722. (in Chinese) 
王巧敏, 刘洋, 吕洋, 等. bFGF和IGF-1对骨髓间充质干细胞向心肌样细胞分化促进作用及相关机制探讨[J]. 中国药理学通报, 2023, 39(4): 715-722.
 [3] Meng  JF. Protective effect of Rehmannia rehmannia polysaccharide on H2O2-induced injury in neonatal rat cardiomyocytes and its mechanism [J]. 
Pharmacology and Clinics of Chinese Nateria Medica, 2016, 32(1):90-95. (in Chinese) 
孟剑锋. 地黄多糖对H2O2诱导乳鼠心肌细胞损伤的保护作用及其机制研究 [J]. 中药药理与临床, 2016, 32(1): 90-95.
 [4] Chen  H, Liu X, Xie M, et al. Two polysaccharides from Rehmannia glutinosa: isolation, structural characterization, and hypoglycemic activities [J]. RSC Advances, 2023, 13(43):30190-30201.
 [5] Zhidu  S, Ying T, Rui J, et al. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities [J]. Stem Cell Res Ther, 2024, 15(1):266.
 [6] Povsic  TJ, Gersh BJ. Stem cells in cardiovascular diseases: 30,000-foot view [J]. Cells, 2021, 10(3):600.
 [7] Williams  AR, Hatzistergos KE, Addicott B, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction [J]. Circulation, 2013, 127(2):213-223.
 [8] Dong  ZH, Wang HP, Lü Y, et al. FGF-2 and panax notoginseng saponins induce the differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells [J]. Journal of Army Medical University, 2024, 46(21):2415-2423. (in Chinese) 
董子晗, 王海萍, 吕洋, 等. FGF-2和三七总皂苷诱导骨髓间充质干细胞向心肌样细胞分化 [J]. 陆军军医大学学报, 2024, 46(21): 2415-2423.
 [9] Liang  L, Yue Y, Zhong L, et al. Anti-aging activities of Rehmannia glutinosa Libosch. crude polysaccharide in Caenorhabditis elegans based on gut microbiota and metabonomic analysis [J]. Int J Biol Macromol, 2023, 253(pt 8):127647.
 [10] Liu  NA, Liu JQ, Liu Y, et al. Rehmannia glutinosa polysaccharide regulates bone marrow microenvironment via HIF-1α/NF-κB signaling pathway in aplastic anemia mice [J]. An Acad Bras Cienc, 2023, 95(3):e20220672.
 [11] Dong  Q, Liu X, Shen L, et al. The protective effect of herbal polysaccharides on ischemia-reperfusion injury [J]. Int J Biol Macromol, 2016, 92:431-440.
 [12] Jia  J, Chen J, Wang G, et al. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix [J]. Biomed Pharmacother, 2023, 168:115809.
 [13] Zhang  YQ. Effect of rehmanniae polysaccharide on the differentiation of adipose-derived mesenchymal stem cells into cardiomyocytes in rats [D]. 
Beijing: Chinese People’s liberation army, Medical Training College, 2008. (in Chinese) 
张琰琴. 地黄多糖对大鼠脂肪间充质干细胞向心肌细胞诱导分化影响的研究 [D]. 北京:中国人民解放军军医进修学院,2008.
 [14] Robbe  ZL, Shi W, Wasson LK, et al. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart [J]. Genes Dev, 2022, 36(7-8):468-482.
 [15] Yasuhara  J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications [J]. Transl Pediatr, 2021, 10(9):2366-2386.
 [16] Ma  W, Gong H, Jani V, et al. Myofibril orientation as a metric for characterizing heart disease [J]. Biophys J, 2022, 121(4):565-574.
 [17] Zhu  Y. Gap Junction-dependent and -independent functions of connexin43 in biology [J]. Biology (Basel), 2022, 11(2):283.
 [18] Ragusa  R, Caselli C. Focus on cardiac troponin complex: from gene expression to cardiomyopathy [J]. Genes Dis, 2024, 11(6):101263.
 [19] Feng  JY, Zhu YSh, Chen Sh, et al. Physiological function and structural basis of Bcl-2 family proteins [J]. Chinese Journal of Cell Biology, 2019, 41(8):1477-1489. (in Chinese) 
冯健愉, 朱玉山, 陈佺, 等. Bcl-2家族蛋白的生理功能及结构基础 [J]. 中国细胞生物学学报, 2019, 41(8): 1477-1489.
 [20] Qian  S, Wei Z, Yang W, et al. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy [J]. Front Oncol, 2022, 12:985363.
 [21] Sovilj  D, Kelemen CD, Dvorakova S, et al. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak [J]. Apoptosis, 2024, 29(34):424-438.
 [22] Wolf  P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane [J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(10):119317.

基金

河北省自然科学基金(C2019405091)

PDF(3533 KB)

Accesses

Citation

Detail

段落导航
相关文章

/