龙血竭总黄酮调控ROS/TXNIP通路介导的细胞焦亡改善大鼠脑缺血再灌注损伤的机制

朱超霞 李志营 吕晓飞 赵倩 程宝仓 杨会杰 周丽平 曾利敏

解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 673-680.

PDF(3598 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(3598 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 673-680. DOI: 10.16098/j.issn.0529-1356.2025.06.006
神经生物学

龙血竭总黄酮调控ROS/TXNIP通路介导的细胞焦亡改善大鼠脑缺血再灌注损伤的机制

  • 朱超霞1 李志营2* 吕晓飞1 赵倩1 程宝仓1 杨会杰1 周丽平1 曾利敏1
作者信息 +

Mechanism by which sanguis draconis flavones regulating ROS/TXNIP pathway-mediated pyroptosis to ameliorate cerebral ischemia-reperfusion injury in rats

  • ZHU  Chao-xia1  LI  Zhi-ying2*  Lü  Xiao-fei1  ZHAO  Qian1  CHENG  Bao-cang1  YANG  Hui-jie1  ZHOU  Li-ping1  ZENG  Li-min1
Author information +
文章历史 +

摘要

 目的 探讨龙血竭总黄酮(SDF)调控活性氧(ROS)/硫氧还蛋白结合蛋白(TXNIP)通路介导的细胞焦亡改善大鼠脑缺血再灌注损伤(CIRI)的机制。     方法 实验大鼠随机分为对照组(Ctrl)、CIRI组、低剂量SDF组(SDF-L)、高剂量SDF组(SDF-H)和高剂量SDF+氧化三甲胺 (TMAO) 组(SDF-H+ TMAO),除对照组外,其余大鼠均需通过改良线栓法构建CIRI模型;对各组大鼠进行Zea Longa评分;ELISA检测血清炎症因子白细胞介素(IL)-1β、IL-18及氧化应激相关因子超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)水平;流式细胞仪检测ROS水平;脑水肿测定;2,3,5-氯化三苯基四氮唑(TTC)染色检测脑梗死情况;HE染色检测脑组织病理变化;免疫组织化学染色检测焦亡效应蛋白消皮素D(GSDMD)的表达;Western blotting检测ROS/TXNIP通路相关蛋白表达。    结果 CIRI组较对照组脑组织可见更大范围的脑梗死,伴有轻微出血,且炎性细胞浸润明显,神经元变性坏死,排列稀疏紊乱,细胞核固缩及核仁裂解现象明显;Zea Longa评分、脑梗死体积、脑组织含水量、IL-1β、IL-18、ROS、MDA水平及GSDMD、TXNIP、核苷酸结合寡聚结构域样受体蛋白3(NLRP3)、凋亡相关斑点样蛋白(ASC)、Caspase-1表达升高,SOD、GSH-Px活性降低(P<0.05);SDF-L组、SDF-H组较CIRI组脑组织病理损伤明显改善,Zea Longa评分、脑梗死体积、脑组织含水量、IL-1β、IL-18、ROS、MDA水平及GSDMD、TXNIP、NLRP3、ASC、Caspase-1表达降低,SOD、GSH-Px活性升高(P<0.05);TMAO处理可部分逆转SDF对大鼠CIRI的改善作用。    结论 SDF可改善大鼠CIRI,与抑制ROS/TXNIP信号通路介导的细胞焦亡有关。 

Abstract

Objective To explore the mechanism by which the sanguis draconis flavones(SDF) regulates the reactive oxygen species (ROS)/thioredoxin-interacting protein (TXNIP) pathway to mediate cell pyroptosis and improve cerebral ischemia-reperfusion injury (CIRI) in rats.    Methods The experimental rats were randomly divided into the control group(Ctrl), the CIRI group, the low-dose SDF group (SDF-L), the high-dose SDF group (SDF-H), and the SDF-H+ROS/TXNIP pathway activator, trimethylamine oxide(TMAO) group(SDF-H+TMAO). Among them, except for the control group, the remaining rats all needed to establish the CIRI rat model by the modified suture method. Zea Longa scoring was performed on rats from each group. ELISA was used to detect the levels of serum inflammatory factors interleukin (IL)-1β, IL-18 and oxidative stress-related factors superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px). Flow cytometry was used to measure the ROS levels. Cerebral edema was detected. Cerebral infarction was detected by 2,3,5-triphenyl tetrazolium chloride (TTC)staining. HE staining was used to detect the pathological changes of brain tissue. Immunohistochemistry was used to detect the expression of pyrolytic effector protein dermolin D (GSDMD). Western blotting was used to detect the expression of proteins related to the ROS/TXNIP pathway.    Results Compared with the control group, a large area of cerebral infarctions were observed in the brain tissue of the CIRI group, accompanied by mild hemorrhage and obvious infiltration of inflammatory cells. Neuronal cells underwent degeneration and necrosis, with sparse and disordered arrangement. The phenomena of nuclear condensation and nucleolus lysis were obvious. The Zea Longa score, cerebral infarction volume, brain tissue water content, levels of IL-1β, IL-18, ROS, MDA, and the expressions of GSDMD, TXNIP, nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3), apoptosis-related punctate protein (ASC), and Caspase-1 increased, while the activities of SOD and GSH-Px decreased (P<0.05). Compared with the CIRI group, the pathological damage of brain tissues in the SDF-L group and the SDF-H group was significantly improved. The Zea Longa score, cerebral infarction volume, brain tissue water content, levels of IL-1β, IL-18, ROS, MDA, and the expressions of GSDMD, TXNIP, NLRP3, ASC, and Caspase-1 decreased. The activities of SOD and GSH-Px increased (P<0.05); TMAO treatment partially reversed the improvement effect of SDF on CIRI in rats.    Conclusion SDF ameliorates cerebral CIRI in rats by inhibiting ROS/TXNIP pathway-mediated pyroptosis. 

关键词

龙血竭总黄酮 / 活性氧/硫氧还蛋白结合蛋白通路 / 细胞焦亡 / 脑缺血再灌注损伤 / 免疫印迹法 / 大鼠

Key words

Sanguis draconis flavone / Reactive oxygen species/thioredoxin-interacting protein pathway / Pyroptosis of cell / Cerebral ischemia-reperfusion injur / Western blotting / Rat

引用本文

导出引用
朱超霞 李志营 吕晓飞 赵倩 程宝仓 杨会杰 周丽平 曾利敏. 龙血竭总黄酮调控ROS/TXNIP通路介导的细胞焦亡改善大鼠脑缺血再灌注损伤的机制[J]. 解剖学报. 2025, 56(6): 673-680 https://doi.org/10.16098/j.issn.0529-1356.2025.06.006
ZHU Chao-xia LI Zhi-ying Lü Xiao-fei ZHAO Qian CHENG Bao-cang YANG Hui-jie ZHOU Li-ping ZENG Li-min. Mechanism by which sanguis draconis flavones regulating ROS/TXNIP pathway-mediated pyroptosis to ameliorate cerebral ischemia-reperfusion injury in rats[J]. Acta Anatomica Sinica. 2025, 56(6): 673-680 https://doi.org/10.16098/j.issn.0529-1356.2025.06.006
中图分类号: R332.9    R743.31   

参考文献

 [1] Paul  S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies[J]. Exp Neurol, 2021, 335:113518. 
 [2] Li  M, Tang H, Li Z, et al. Emerging treatment strategies for cerebral ischemia-reperfusion injury[J]. Neuroscience, 2022, 507:112-124. 
 [3] Duan  WL, Wang XJ, Ma YP, et al. Therapeutic strategies targeting the NLRP3-mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review)[J]. Mol Med Rep, 2024, 29(3):46. 
 [4] Xu  R, Peng Q, Chen W, et al. ncRNAs-mediated pyroptosis in cerebral ischemia-reperfusion injury: pathophysiology, mechanisms, and therapeutic perspectives[J]. Curr Issues Mol Biol, 2025, 47(3):141. 
 [5] Qian  L, Li M, Lin X, et al. Interleukin-35 attenuates blood-brain barrier dysfunction caused by cerebral ischemia-reperfusion injury through inhibiting brain endothelial cell injury[J]. Ann Transl Med, 2022, 10(14):776. 
 [6] Li  R, Jia H, Si M, et al. Loureirin B protects against cerebral ischemia/reperfusion injury through modulating M1/M2 microglial polarization via STAT6 / NF-kappaB signaling pathway[J]. Eur J Pharmacol, 2023, 953:175860. 
 [7] Long  HL, Tao XR, Feng XL, et al. The protective effect and mechanism of Danji Granules on rats with cerebral ischemia-reperfusion injury [J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2025, 36(4): 499-505. (in Chinese) 
龙慧玲, 陶新如, 冯小龙, 等. 丹膝颗粒对脑缺血再灌注损伤大鼠的保护作用及机制[J]. 中药新药与临床药理, 2025, 36(4):499-505. 
 [8] Chen  S, Ma MJ, Wang LN, et al. Regulation of acid-sensitive ion channels by total flavonoids of tripterygium wilfordii and its analgesic effect [J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2021, 40(2): 158-164. (in Chinese) 
陈素, 马敏洁, 王丽娜, 等. 龙血竭总黄酮对酸敏感离子通道的调控及其镇痛作用[J]. 中南民族大学学报(自然科学版), 2021, 40(2):158-164. 
 [9] Wang  F, Mei QCh, Feng J, et al. The effect of sakuranetin on the improvement of oxidative and inflammatory damage in chondrocytes of knee osteoarthritis rats through regulating the ROS/TXNIP pathway [J]. Chinese Journal of Gerontology, 2024, 44(1): 229-233. (in Chinese) 
王飞, 梅群超, 冯晶, 等. 山奈酚调控ROS/TXNIP通路对膝骨关节炎大鼠软骨细胞氧化及炎性损伤的改善作用[J]. 中国老年学杂志, 2024, 44(1):229-233. 
[10] Li  Y, Tan L, Yang C, et al. Distinctions between the Koizumi and Zea Longa methods for middle cerebral artery occlusion (MCAO) model: a systematic review and meta-analysis of rodent data[J]. Sci Rep, 2023, 13(1):10247. 
 [11] Duan  M, Yu N, Liu J, et al. Remimazolam suppresses oxidative stress and apoptosis in cerebral ischemia/reperfusion injury by regulating AKT/GSK-3β/NRF2 pathway[J]. Drug Des Devel Ther, 2025, 19:111-128. 
 [12] Gao  N, Huang Z, Xie J, et al. Cryptotanshinone alleviates cerebral ischemia reperfusion injury by regulating ferroptosis through the PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway[J]. J Ethnopharmacol, 2025, 348:119800. 
 [13] Xie  M, Zhong Zh, Ouyang XY, et al. The effect of ligustrazine on the inflammatory response and cell apoptosis after cerebral ischemia/reperfusion injury in rats [J]. Acta Anatomica Sinica, 2021, 52(6): 845-854. (in Chinese) 
谢明, 钟朕, 欧阳训彦, 等. 川芎嗪防治大鼠脑缺血/再灌注损伤后炎症反应与细胞凋亡的作用[J]. 解剖学报, 2021, 52(6):845-854. 
 [14] Zheng  Y, Xu X, Chi F, et al. Pyroptosis: a newly discovered therapeutic target for ischemia-reperfusion injury[J].  Biomolecules, 2022,12(11):1625. 
 [15] Ge  Q, Chen X, Zhao Y, et al. Modulatory mechanisms of NLRP3: potential roles in inflammasome activation[J]. Life Sci, 2021, 267:118918. 
 [16] Liang  Y, Song P, Chen W, et al. Inhibition of Caspase-1 ameliorates ischemia-associated blood-brain barrier dysfunction and integrity by suppressing pyroptosis activation[J]. Front Cell Neurosci, 2021, 14:540669. 
 [17] Chen  S, Hao P, Liang Y, et al. Electroacupuncture protects against cerebral ischemia-reperfusion injury: reducing inflammatory response and cell pyroptosis by inhibiting P2X7/NLRP3/GSDMD pathway[J]. Neuropsychiatr Dis Treat, 2024, 20:2335-2346. 
 [18] Zhang  Y, Yao Z, Xiao Y, et al. Downregulated XBP-1 rescues cerebral ischemia/reperfusion injury-induced pyroptosis via the NLRP3/Caspase-1/GSDMD axis[J]. Mediators Inflamm, 2022, 2022:8007078. 
 [19] Chen  PQ, Ban WK, Wang WY, et al. Research progress on the pharmacological effects and mechanisms of dragon’s blood bark and its main active components on cerebral ischemia [J]. Chinese Herbal Medicine, 2023, 54(18): 6172-6184. (in Chinese) 
陈品秋, 班玮康, 王文艳, 等. 龙血竭及其主要活性成分对脑缺血的药理作用与机制研究进展[J]. 中草药, 2023, 54(18):6172-6184. 
 [20] Zhang  XY, Cai YY, Wang YY, et al. The brain-protective effect of Laohuji (a traditional Thai medicine) on rats with cerebral ischemia [J]. Grain and Oil Food Technology, 2022, 30(3): 148-155. (in Chinese) 
张晓燕, 蔡宇宇, 王玉瑶, 等. 傣药龙血竭对脑缺血大鼠的脑保护作用[J]. 粮油食品科技,2022,30(3):148-155. 
 [21] Liu  Y, Mi Y, Wang Y, et al. Loureirin C inhibits ferroptosis after cerebral ischemia reperfusion through regulation of the Nrf2 pathway in mice[J]. Phytomedicine, 2023, 113:154729. 
 [22] Xu  J, Liu J, Li Q, et al. Loureirin C ameliorates ischemia and reperfusion injury in rats by inhibiting the activation of the TLR4/NF-κB pathway and promoting TLR4 degradation[J]. Phytother Res, 2022, 36(12):4527-4541. 
 [23] Zhu  L, Yang YM, Huang Y, et al. Shexiang Tongxin dropping pills protect against ischemic stroke-induced cerebral microvascular dysfunction via suppressing TXNIP/NLRP3 signaling pathway[J]. J Ethnopharmacol, 2024, 322:117567. 
 [24] Long  YZh, Liu H, Zhang YX, et al. Research on the extension of the thrombolytic time window for acute ischemic stroke by idarucizumab pre-adaptation and exploration of the mechanism involving the ROS/TXNIP/NLRP3 pathway [J]. Chinese Journal of Brain Diseases and Rehabilitation (Electronic Edition), 2023, 13(2): 65-74. (in Chinese) 
隆昱洲, 柳华, 张云茜, 等. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(2):65-74. 
 [25] Tan  Z, Dong F, Wu L, et al. Transcutaneous electrical nerve stimulation (TENS) alleviates brain ischemic injury by regulating neuronal oxidative stress, pyroptosis, and mitophagy[J]. Mediators Inflamm, 2023, 2023:5677865. 
 [26] Shang  S, Sun F, Zhu Y, et al. Sevoflurane preconditioning improves neuroinflammation in cerebral ischemia/reperfusion induced rats through ROS-NLRP3 pathway[J]. Neurosci Lett, 2023, 801:137164. 
 [27] Chen  Y, Li H, Yang Y, et al. Polygalasaponin F ameliorates middle cerebral artery occlusion-induced focal ischemia/reperfusion injury in rats through inhibiting TXNIP/NLRP3 signaling pathway[J]. J Neuroimmunol, 2024, 387:578281. 

基金

河南省医学科技攻关计划联合共建项目(LHGJ20230741)

PDF(3598 KB)

Accesses

Citation

Detail

段落导航
相关文章

/