天然中草药单体成分灯盏花素减轻缺血性脑卒中的潜在作用

吴建宇 柴雪洁 于媛媛 杨林风

解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 659-672.

PDF(4819 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(4819 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 659-672. DOI: 10.16098/j.issn.0529-1356.2025.06.005
神经生物学

天然中草药单体成分灯盏花素减轻缺血性脑卒中的潜在作用

  • 吴建宇1 柴雪洁2 于媛媛3 杨林风4*
作者信息 +

Potential role of natural herbal monomer scutellarein in alleviating ischemic stroke

  • WU Jian-yu1  CHAI Xue-jie2  YU Yuan-yuan3  YANG Lin-feng4*
Author information +
文章历史 +

摘要

目的 通过网络药理学以体内实验验证探讨天然中草药单体成分灯盏花素在缓解缺血性脑卒中(IS)中的潜在作用。  方法 通过SwissTargetPrediction和PharmMapper数据库筛选灯盏花素(Scu)作用靶标,并通过UniProt对靶标名称进行标准化。以“缺血性脑卒中”为关键词,从GEO数据库中检索GSE22255数据集,使用R语言进行标准化处理,利用 | log10FC | ≥ 1和P<0.05为条件筛选差异基因。Venny 2.1.0图构建获取两者交集作用靶标。利用STRING和Cytoscape软件构建蛋白-蛋白相互作用(PPI)网络,并进行基因本体论(GO)功能分析和京都基因与基因组百科全书(KEGG)通路富集分析;AutoDock Vina 1.5.6对灯盏花素与核心靶标进行分子对接,并进行结果可视化。通过构建大脑中动脉闭塞(MCAO)小鼠模型,分为假手术组、MCAO组、MCAO+灯盏花素干预组(MCAO+Scu),Real-time PCR检测小鼠缺血皮质区核心靶标及通路相关蛋白mRNA表达变化。    结果 共获取325个灯盏花素潜在靶标,2168个IS相关差异靶标。Venny图获取29个两者交集作用靶标。GO功能分析得到51条生物学过程(BP),5条细胞组分(CC)及8条分子功能(MF)条目;KEGG通路富集分析突出PI3K/Akt代谢等通路。PPI可视化网络根据度值筛选识别出Caspase-3(CASP3)、表皮生长因子受体(EGFR)、前列腺素内过氧化物合酶2(PTGS2)、过氧化物酶体增殖物激活受体α(PPARA)和白细胞介素2(IL-2)作为关键枢纽蛋白;分子对接显示,灯盏花素与枢纽蛋白具有较强的结合能力。Real-time PCR实验结果表明,灯盏花素对核心靶标及通路相关蛋白mRNA表达具有调控作用。    结论 灯盏花素在MCAO小鼠模型中可通过调控CASP3、EGFR、PTGS2、PPARA及IL-2等靶点,激活PI3K/Akt通路,发挥神经保护作用,具有多靶点、多通路等特点。

Abstract

Objective To investigate the potential mechanisms by which the natural herbal monomer scutellarin alleviates ischemic stroke (IS) using network pharmacology and in vivo experimental validation.    Methods Potential targets of scutellarin were predicted using SwissTargetPrediction and PharmMapper, and standardized via UniProt. IS-related differentially expressed genes (DEGs) were obtained from the GSE22255 dataset in the GEO database, with screening criteria of | log10 FC | ≥1 and P<0.05. Venny 2.1.0 analysis was used to identify overlapping targets. Protein-protein interaction (PPI) networks were constructed using STRING and visualized in cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Molecular docking was conducted using AutoDock Vina 1.5.6 to assess the binding affinity between scutellarin and hub targets. Middle cerebral artery occlusion (MCAO) mouse model was established and divided into sham, MCAO, and MCAO + scutellarin groups. Real-time PCR was used to detect mRNA expression of hub genes and phosphatidylinositol 3-kinase(PI3K)/Akt pathway components in the ischemic cortex.   Results A total of 325 scutellarin targets and 2168 IS-related DEGs were identified, with 29 overlapping targets. GO analysis yielded 51 biological processes, 5 cellular components, and 8 molecular functions. KEGG enrichment highlighted PI3K/Akt and metabolic pathways. PPI analysis identified Caspase-3, epidermal growth factor receptor (EGFR), prostaglandin-endoperoxide synthase 2 (PTGS2), peroxisome proliferator activated receptor alpha (PPARA), and interleukin-2 (IL-2) as key hub proteins. Molecular docking showed strong binding affinities between scutellarin and these proteins. Real-time PCR result  confirmed that scutellarin modulated the expression of hub genes and activated the PI3K/Akt pathway. Conclusion In the MCAO mouse model, scutellarin exerts neuroprotective effects by modulating targets such as CASP3, EGFR, PTGS2, PPARA, and IL-2, and activating the PI3K/Akt signaling pathway, exhibiting multi-target and multi-pathway characteristics.  

关键词

网络药理学 / 缺血性脑卒中 / 灯盏花素 / 分子对接 / 实时荧光聚合酶链反应 / 小鼠

Key words

Network pharmacology / Ischemic stroke / Scutellarin / Molecular docking / Real-time PCR / Mouse

引用本文

导出引用
吴建宇 柴雪洁 于媛媛 杨林风. 天然中草药单体成分灯盏花素减轻缺血性脑卒中的潜在作用[J]. 解剖学报. 2025, 56(6): 659-672 https://doi.org/10.16098/j.issn.0529-1356.2025.06.005
WU Jian-yu CHAI Xue-jie YU Yuan-yuan YANG Lin-feng. Potential role of natural herbal monomer scutellarein in alleviating ischemic stroke[J]. Acta Anatomica Sinica. 2025, 56(6): 659-672 https://doi.org/10.16098/j.issn.0529-1356.2025.06.005
中图分类号: R328    R743.3   

参考文献

 [1] Yang  F, Li X, Long J, et al. Therapeutic efficacy and pharmacological mechanism of Yindan Xinnaotong soft capsule on acute ischemic stroke: a meta-analysis and network pharmacology analysis [J]. Metab Brain Dis, 2024, 39(4): 523-543.
 [2] Marto  JP, Strambo D, Livio F, et al. Drugs associated with ischemic stroke: a review for clinicians [J]. Stroke, 2021, 52(10): e646-e659.
 [3] Bhaskar  S, Stanwell P, Cordato D, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era [J] ? BMC Neurol, 2018, 18(1): 8.
 [4] Liang  S, Wu Y, Zhang R, et al. Therapeutic effects of Buyang Huanwu Tang combined with RT-PA intravenous thrombolysis on stroke of Qi deficiency and blood stasis type and its impact on Keap1-Nrf2/ARE pathway antioxidant stress [J]. Cell Mol Biol (Noisy-le-grand), 2023, 69(13): 210-216.
 [5] Wang  L, Ma Q. Clinical benefits and pharmacology of scutellarin: a comprehensive review [J]. Pharmacol Ther, 2018, 190: 105-127.
 [6] Mo  J, Yang R, Li F, et al. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation [J]. Phytomedicine, 2018, 42: 66-74.
 [7] Deng  M, Sun J, Peng L, et al. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury [J]. Phytomedicine, 2022, 103: 154214.
 [8] Fan  H, Lin P, Kang Q, et al. Metabolism and pharmacological mechanisms of active ingredients in erigeron breviscapus [J]. Curr Drug Metab, 2021, 22(1): 24-39.
 [9] Niu  B, Xie X, Xiong X, et al. Network pharmacology-based analysis of the anti-hyperglycemic active ingredients of roselle and experimental validation [J]. Comput Biol Med, 2022, 141: 104636.
 [10] Pinzi  L, Rastelli G. Molecular docking: shifting paradigms in drug discovery [J]. Int J Mol Sci, 2019, 20(18):4331.
 [11] Bai  G, Pan Y, Zhang Y, et al. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives [J]. Food Chem, 2023, 429: 136836.
 [12] Kim  S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces [J]. Nucleic Acids Res, 2021, 49(D1): D1388-D1395.
 [13] Daina  A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules [J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
 [14] Wang  X, Shen Y, Wang S, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database [J]. Nucleic Acids Res, 2017, 45(W1): W356-W360.
 [15] UniProt  Consortium. UniProt: the Universal Protein Knowledgebase in 2023 [J]. Nucleic Acids Res, 2023, 51(D1): D523-D531.
 [16] Szklarczyk  D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest [J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
 [17] Berman  HM, Westbrook J, Feng Z, et al. The protein data bank [J]. Nucleic Acids Res, 2000, 28(1): 235-242.
 [18] Lu  L, Yang LK, Yue J, et al. Scutellarin alleviates depression-like behaviors induced by LPS in mice partially through inhibition of astrocyte-mediated neuroinflammation [J]. Neurosci Lett, 2021, 765:136284.
 [19] Deng  M, Sun J, Peng L, et al. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury [J]. Phytomedicine, 2022, 103:154214.
 [20] Wen  L, He T, Yu A, et al. Breviscapine: a review on its phytochemistry, pharmacokinetics and therapeutic effects [J]. Am J Chin Med, 2021, 49(6): 1369-1397.
 [21] Duan  Z, Peng Y, Xu D, et al. Scutellarin alleviates neuronal apoptosis in ischemic stroke via activation of the PI3K/Akt signaling pathway [J]. Int J Mol Sci, 2025, 26(5):2175.
 [22] Zhang  S, Wei D, Lv S, et al. Scutellarin modulates the microbiota-gut-brain axis and improves cognitive impairment in APP/PS1 mice [J]. J Alzheimers Dis, 2022, 89(3): 955-975.
 [23] Wan  C, Pei J, Wang D, et al. Identification of m6A methylation-related genes in cerebral ischaemia-reperfusion of Breviscapus therapy based on bioinformatics methods [J]. BMC Med Genomics, 2023, 16(1): 210.
 [24] Li  Y, Li S, Li D. Breviscapine alleviates cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in a rat model [J]. ACS Chem Neurosci, 2020, 11(24): 4489-4498.
 [25] Pengyue  Z, Tao G, Hongyun H, et al. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra [J]. Biomed Pharmacother, 2017, 90: 69-76.
 [26] Jiao  W, Mi S, Sang Y, et al. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol [J]. Food Chem, 2022, 374: 131755.
 [27] Feng  C, Wan H, Zhang Y, et al. Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway [J]. Front Pharmacol, 2020, 11: 298.
 [28] Du  Sh, Liu J, Liu T, et al. Effect of leonurine on pathological changes of cerebral tissue in ischemic stroke rats based on PI3K/Akt/NF-κB signaling pathway [J]. Chinese Journal of Arteriosclerosis, 2019, 27(10): 853-861. (in Chinese) 
杜帅, 刘佳, 刘婷,等. 基于PI3K/Akt/NF-κB信号通路探讨益母草碱对缺血性脑卒中大鼠脑组织病理变化的影响 [J]. 中国动脉硬化杂志, 2019, 27(10): 853-861.
 [29] Li  J, Yuan J. Caspases in apoptosis and beyond [J]. Oncogene, 2008, 27(48): 6194-6206.
 [30] Fan  W, Dai Y, Xu H, et al. Caspase3 modulates regenerative response after stroke [J]. Stem Cells, 2014, 32(2): 473-486.
 [31] Jiang  H, Sun Z, Zhu X, et al. Essential genes Ptgs2, Tlr4, and Ccr2 regulate neuro-inflammation during the acute phase of cerebral ischemic in mice [J]. Sci Rep, 2023, 13(1): 13021.
 [32] Miao  Z, Guo M, Zhou S, et al. Smoking and drinking influence the advancing of ischemic stroke disease by targeting PTGS2 and TNFAIP3 [J]. Exp Ther Med, 2018, 16(1): 61-66.
 [33] Gaur  V, Kumar A. Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury [J]. Drug Chem Toxicol, 2012, 35(2): 218-224.
 [34] Shim  JW, Madsen JR. VEGF signaling in neurological disorders [J]. Int J Mol Sci, 2018, 19(1): 275.
 [35] Chen  X, Wu H, Chen H, et al. Astragaloside VI promotes neural stem cell proliferation and enhances neurological function recovery in transient cerebral ischemic injury via activating EGFR/MAPK signaling cascades [J]. Mol Neurobiol, 2019, 56(4): 3053-3067.
 [36] Zhu  H, Hu S, Li Y, et al. Interleukins and ischemic stroke [J]. Front Immunol, 2022, 13: 828447.
 [37] Vamecq  J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors [J]. Lancet, 1999, 354(9173): 141-148.
 [38] Luo  R, Su L Y, Li G, et al. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model [J]. Autophagy, 2020, 16(1): 52-69. 

基金

山东省医药卫生科技发展计划项目(202204110044)

PDF(4819 KB)

Accesses

Citation

Detail

段落导航
相关文章

/