[1] Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson’s disease[J]. Lancet Neurol, 2021, 20(5): 385-397.
[2] Bloem BR, Okun MS, Klein C. Parkinson’s disease[J]. Lancet, 2021, 397(10291): 2284-2303.
[3] Le Page-Degivry MT, Bidard JN, Rouvier E, et al. Presence of abscisic acid, a phytohormone, in the mammalian brain[J]. Proc Natl Acad Sci USA, 1986, 83(4): 1155-1158.
[4] Jeon SH, Kim N, Ju YJ, et al. Phytohormone abscisic acid improves memory impairment and reduces neuroinflammation in 5xFAD mice by upregulation of LanClike protein 2[J]. Int J Mol Sci, 2020, 21(22): 8425.
[5] Liao P, Wu QY, Li S, et al. The ameliorative effects and mechanisms of abscisic acid on learning and memory[J]. Neuropharmacology, 2023, 224: 109365.
[6] Rafiepour K, Esmaeili-Mahani S, Salehzadeh A, et al. Phytohormone abscisic acid protects human neuroblastoma SH-SY5Y cells against 6-hydroxydopamine-induced neurotoxicity through its antioxidant and antiapoptotic properties[J]. Rejuvenation Res, 2019, 22(2): 99-108.
[7] Geng J, Liu W, Gao J, et al. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1[J]. Br J Pharmacol, 2019, 176(23): 4574-4591.
[8] Liu Y, Chu YN, Xu CL, et al. Roscovitine rescuing neuronal loss and neuroinflammation in brain regions associated with Parkinson’s disease mice[J]. Acta Anatomica Sinica, 2023, 54(6): 635-643. (in Chinese)
刘叶,楚亚楠,徐岑璐,等. Roscovitine挽救帕金森病小鼠相关脑区神经元丢失和神经炎症[J]. 解剖学报, 2023, 54(6): 635-643.
[9] Liu J, Gu X, Zou R, et al. Phytohormone abscisic acid improves spatial memory and synaptogenesis involving NDR1/2 kinase in rats[J]. Front Pharmacol, 2018, 9: 1141.
[10 Zhao ZY, Liu QL Yao JY, et al. Abscisie acid alleviates hypoxiainduced learning and memory deficits by suppressing hippocampal synaptopathy in mice[J]. Chinese Journal of Neuroanatomy, 2023, 39(2): 142-148. (in Chinese)
赵子瑜,刘启玲,姚金余,等.脱落酸通过减轻海马突触损伤改善低氧诱导的小鼠学习记忆障碍[J].神经解剖学杂志,2023,39(2):142-148.
[11] Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies[J]. Bosn J Basic Med Sci, 2021, 21(4): 422-433.
[12] García-Revilla J, Herrera AJ, de Pablos RM, et al. Inflammatory animal models of Parkinson’s disease[J]. J Parkinsons Dis, 2022, 12(s1): S165-S182.
[13] Lofrumento DD, Saponaro C, Cianciulli A, et al. MPTP-induced neuroinflammation increases the expression of pro-inflammatory cytokines and their receptors in mouse brain[J]. Neuroimmunomodulation, 2011, 18(2): 79-88.
[14] Machado V, Z?ller T, Attaai A, et al. Microglia-mediated neuroinflammation and neurotrophic factor-induced protection in the MPTP mouse model of Parkinson’s disease-lessons from transgenic mice[J]. Int J Mol Sci, 2016, 17(2): 151.
[15] Sakthivel P, Sharma N, Klahn P, et al. Abscisic acid: a phytohormone and mammalian cytokine as novel pharmacon with potential for future development into clinical applications[J]. Curr Med Chem, 2016, 23(15): 1549-1570.
[16] Magnone M, Sturla L, Guida L, et al. Abscisic acid: a conserved hormone in plants and humans and a promising aid to combat prediabetes and the metabolic syndrome[J]. Nutrients, 2020, 12(6): 1724.
[17] Guri AJ, Hontecillas R, Si H, et al. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets[J]. Clin Nutr, 2007, 26(1): 107-116.
[18] Espinosa-Fernández V, Ma?as-Ojeda A, Pacheco-Herrero M, et al. Early intervention with ABA prevents neuroinflammation and memory impairment in a triple transgenic mice model of Alzheimer’s disease[J]. Behav Brain Res, 2019, 374: 112106.
[19] Meseguer-Beltrán M, Sánchez-Sarasúa S, Landry M, et al. Targeting neuroinflammation with abscisic acid reduces pain sensitivity in females and hyperactivity in males of an ADHD mice model[J]. Cells, 2023, 12(3): 465.
[20] Shabani M, Soti M, Ranjbar H, et al. Abscisic acid ameliorates motor disabilities in 6-OHDA-induced mice model of Parkinson’s disease[J]. Heliyon, 2023, 9(8): e18473.
[21] Gharib A, Marquez C, Meseguer-Beltran M, et al. Abscisic acid, an evolutionary conserved hormone: biosynthesis, therapeutic and diagnostic applications in mammals[J]. Biochem Pharmacol, 2024, 229: 116521.
[22] Chen C, Chen Y, Liu T, et al. Dexmedetomidine can enhance PINK1/Parkin-mediated mitophagy in MPTP-induced PD mice model by activating AMPK[J]. Oxid Med Cell Longev, 2022, 2022: 7511393.
[23] Narmashiri A, Abbaszadeh M, Ghazizadeh A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: a systematic review and metaanalysis[J]. Neurosci Biobehav Rev, 2022, 140: 104792.
[24] Dovonou A, Bolduc C, Soto Linan V, et al. Animal models of Parkinson’s disease: bridging the gap between disease hallmarks and research questions[J]. Transl Neurodegener, 2023, 12(1): 36.
[25] Pajares M, I Rojo A, Manda G, et al. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687.
[26] Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42.
[27] Han T, Xu Y, Liu H, et al. Function and mechanism of abscisic acid on microglia-induced neuroinflammation in Parkinson’s disease[J]. Int J Mol Sci, 2024, 25(9): 4920.
[28] Liddelow SA, Guttenplan KA, Clarke L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487.
[29] Gao J, Zhang W, Chai X, et al. Asparagine endopeptidase deletion ameliorates cognitive impairments by inhibiting proinflammatory microglial activation in MPTP mouse model of Parkinson disease[J]. Brain Res Bull, 2022, 178: 120-130.