脱落酸对MPTP诱导的帕金森病模型小鼠的神经保护作用及机制

龙雪麟 赵雅妮 周霞 苏炳银 李淑蓉 谭泓琳

解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 635-643.

PDF(5835 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(5835 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (6) : 635-643. DOI: 10.16098/j.issn.0529-1356.2025.06.001
神经生物学

脱落酸对MPTP诱导的帕金森病模型小鼠的神经保护作用及机制

  • 龙雪麟1 赵雅妮1 周霞1 苏炳银1,2 李淑蓉1,3* 谭泓琳1,2*
作者信息 +

Neuroprotective effect and mechanism of abscisic acid in MPTP-induced Parkinson’s disease model mice

  • LONG Xue-lin1  ZHAO Ya-ni1  ZHOU Xia1  SU Bing-yin1,2  LI  Shu-rong1,3*  TAN  Hong-lin1,2*
Author information +
文章历史 +

摘要

目的  探讨脱落酸(ABA)对1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)诱导的帕金森病(PD)模型小鼠的神经保护作用及机制。   方法 选取8周龄C57BL/6J小鼠,随机分为对照组(Ctrl)、MPTP组和MPTP+ABA组,每组12只。除对照组外,其余小鼠腹腔注射MPTP 25 mg/(kg·d),连续8 d构建PD亚急性模型。MPTP+ABA组于创建模型前3 d起,每天腹腔注射ABA 25 mg/(kg·d),连续11 d。末次给药后24 h进行行为学检测,第3天通过Western blotting检测小鼠黑质致密部(SNc)与纹状体(STR)的酪氨酸氢化酶(TH)和胶质纤维酸性蛋白(GFAP)的表达,Real-time PCR检测炎症因子mRNA水平;通过免疫荧光染色检测TH、GFAP和离子化钙结合适配分子1(Iba1)的表达。   结果  与对照组相比,MPTP组小鼠运动功能受损,黑质致密部TH阳性多巴胺能神经元数量减少,黑质致密部和纹状体中TH蛋白表达下调,GFAP蛋白表达上调,GFAP、Iba1阳性细胞数量增加,促炎因子表达水平升高;相比MPTP组,MPTP+ABA组小鼠的运动功能改善,黑质致密部TH阳性神经元数量增加,黑质致密部和纹状体中TH蛋白表达水平升高,GFAP蛋白表达水平降低,GFAP、Iba1阳性细胞数量减少,促炎因子表达水平降低。  结论  ABA可改善MPTP诱导的帕金森病模型小鼠的运动功能,减少黑质致密部多巴胺能神经元变性死亡,抑制黑质致密部及纹状体星形胶质细胞和小胶质细胞的增殖活化,减轻神经炎症反应,提示ABA对MPTP诱导的PD模型小鼠具有神经保护作用。

Abstract

Objective To investigate the neuroprotective effects and mechanisms of abscisic acid (ABA) in 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) mouse models.   Methods Eight-week-old C57BL/6J mice were randomly divided into three groups, control group (Ctrl), MPTP group, and MPTP+ABA group, 12 mice in each group. Except for the control group, mice in the other groups were intraperitoneally injected with MPTP 25 mg/kg daily for 8 consecutive days to establish a subacute PD model. The MPTP+ABA group received intraperitoneal injections of ABA 25 mg/kg daily for 11 consecutive days, starting 3 days prior to MPTP administration. Behavioral tests were performed 24 hours after the last administration. On day 3, the expression of tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) in the substantia nigra pars compacta (SNc) and striatum (STR) was analyzed by Western blotting, and mRNA levels of inflammatory factors were measured by Real-time PCR. Immunofluorescent staining was used to detect the expression of TH, GFAP, and ionized calciumbinding adapter molecule 1 (Iba1).    Results Compared with the control group, MPTP-treated mice exhibited impaired motor function, a reduced number of TH-positive dopaminergic neurons in the SNc, down-regulated TH protein expression in both the SNc and striatum, up-regulated GFAP protein expression, increased numbers of GFAP-and Iba1-positive cells, and elevated levels of pro-inflammatory factors. In contrast, the MPTP+ABA group showed improved motor function, increased TH-positive neurons in the SNc, up-regulated TH protein expression, down-regulated GFAP protein expression, reduced numbers of GFAP-and Iba1-positive cells, and decreased pro-inflammatory factor levels compared to the MPTP group.   Conclusion  ABA ameliorates motor dysfunction in MPTP-induced PD model mice, reduces degeneration and death of dopaminergic neurons in the SNc, suppresses the proliferation and activation of astrocytes and microglia in the SNc and striatum, and alleviates neuroinflammation. These results suggest that ABA exerts neuroprotective effects in MPTP-induced PD model mice. 

关键词

帕金森病 / 脱落酸 / 神经保护 / 免疫荧光 / 小鼠

Key words

Parkinson’s disease / Abscisic acid / Neuroprotection / Immunofluorescence / Mouse

引用本文

导出引用
龙雪麟 赵雅妮 周霞 苏炳银 李淑蓉 谭泓琳. 脱落酸对MPTP诱导的帕金森病模型小鼠的神经保护作用及机制[J]. 解剖学报. 2025, 56(6): 635-643 https://doi.org/10.16098/j.issn.0529-1356.2025.06.001
LONG Xue-lin ZHAO Ya-ni ZHOU Xia SU Bing-yin LI Shu-rong TAN Hong-lin. Neuroprotective effect and mechanism of abscisic acid in MPTP-induced Parkinson’s disease model mice[J]. Acta Anatomica Sinica. 2025, 56(6): 635-643 https://doi.org/10.16098/j.issn.0529-1356.2025.06.001
中图分类号: R361.2   

参考文献

 [1] Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson’s disease[J]. Lancet Neurol, 2021, 20(5): 385-397.
 [2] Bloem BR, Okun MS, Klein C. Parkinson’s disease[J]. Lancet, 2021, 397(10291): 2284-2303.
 [3] Le Page-Degivry MT, Bidard JN, Rouvier E, et al. Presence of abscisic acid, a phytohormone, in the mammalian brain[J]. Proc Natl Acad Sci USA, 1986, 83(4): 1155-1158.
 [4] Jeon SH, Kim N, Ju YJ, et al. Phytohormone abscisic acid improves memory impairment and reduces neuroinflammation in 5xFAD mice by upregulation of LanClike protein 2[J]. Int J Mol Sci, 2020, 21(22): 8425.
 [5] Liao P, Wu QY, Li S, et al. The ameliorative effects and mechanisms of abscisic acid on learning and memory[J]. Neuropharmacology, 2023, 224: 109365.
 [6] Rafiepour K, Esmaeili-Mahani S, Salehzadeh A, et al. Phytohormone abscisic acid protects human neuroblastoma SH-SY5Y cells against 6-hydroxydopamine-induced neurotoxicity through its antioxidant and antiapoptotic properties[J]. Rejuvenation Res, 2019, 22(2): 99-108.
 [7] Geng J, Liu W, Gao J, et al. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1[J]. Br J Pharmacol, 2019, 176(23): 4574-4591.
 [8] Liu Y, Chu YN, Xu CL, et al. Roscovitine rescuing neuronal loss and neuroinflammation in brain regions associated with Parkinson’s disease mice[J]. Acta Anatomica Sinica, 2023, 54(6): 635-643. (in Chinese) 
刘叶,楚亚楠,徐岑璐,等. Roscovitine挽救帕金森病小鼠相关脑区神经元丢失和神经炎症[J]. 解剖学报, 2023, 54(6): 635-643.
 [9] Liu J, Gu X, Zou R, et al. Phytohormone abscisic acid improves spatial memory and synaptogenesis involving NDR1/2 kinase in rats[J]. Front Pharmacol, 2018, 9: 1141.
 [10 Zhao ZY, Liu QL Yao JY, et al. Abscisie acid alleviates hypoxiainduced learning and memory deficits by suppressing hippocampal synaptopathy in mice[J]. Chinese Journal of Neuroanatomy, 2023, 39(2): 142-148. (in Chinese) 
赵子瑜,刘启玲,姚金余,等.脱落酸通过减轻海马突触损伤改善低氧诱导的小鼠学习记忆障碍[J].神经解剖学杂志,2023,39(2):142-148.
 [11] Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies[J]. Bosn J Basic Med Sci, 2021, 21(4): 422-433.
 [12] García-Revilla J, Herrera AJ, de Pablos RM, et al. Inflammatory animal models of Parkinson’s disease[J]. J Parkinsons Dis, 2022, 12(s1): S165-S182.
 [13] Lofrumento DD, Saponaro C, Cianciulli A, et al. MPTP-induced neuroinflammation increases the expression of pro-inflammatory cytokines and their receptors in mouse brain[J]. Neuroimmunomodulation, 2011, 18(2): 79-88.
[14] Machado V, Z?ller T, Attaai A, et al. Microglia-mediated neuroinflammation and neurotrophic factor-induced protection in the MPTP mouse model of Parkinson’s disease-lessons from transgenic mice[J]. Int J Mol Sci, 2016, 17(2): 151.
 [15] Sakthivel P, Sharma N, Klahn P, et al. Abscisic acid: a phytohormone and mammalian cytokine as novel pharmacon with potential for future development into clinical applications[J]. Curr Med Chem, 2016, 23(15): 1549-1570.
 [16] Magnone M, Sturla L, Guida L, et al. Abscisic acid: a conserved hormone in plants and humans and a promising aid to combat prediabetes and the metabolic syndrome[J]. Nutrients, 2020, 12(6): 1724.
 [17] Guri AJ, Hontecillas R, Si H, et al. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets[J]. Clin Nutr, 2007, 26(1): 107-116.
 [18] Espinosa-Fernández V, Ma?as-Ojeda A, Pacheco-Herrero M, et al. Early intervention with ABA prevents neuroinflammation and memory impairment in a triple transgenic mice model of Alzheimer’s disease[J]. Behav Brain Res, 2019, 374: 112106.
 [19] Meseguer-Beltrán M, Sánchez-Sarasúa S, Landry M, et al. Targeting neuroinflammation with abscisic acid reduces pain sensitivity in females and hyperactivity in males of an ADHD mice model[J]. Cells, 2023, 12(3): 465.
 [20] Shabani M, Soti M, Ranjbar H, et al. Abscisic acid ameliorates motor disabilities in 6-OHDA-induced mice model of Parkinson’s disease[J]. Heliyon, 2023, 9(8): e18473.
 [21] Gharib A, Marquez C, Meseguer-Beltran M, et al. Abscisic acid, an evolutionary conserved hormone: biosynthesis, therapeutic and diagnostic applications in mammals[J]. Biochem Pharmacol, 2024, 229: 116521.
 [22] Chen C, Chen Y, Liu T, et al. Dexmedetomidine can enhance PINK1/Parkin-mediated mitophagy in MPTP-induced PD mice model by activating AMPK[J]. Oxid Med Cell Longev, 2022, 2022: 7511393.
 [23] Narmashiri A, Abbaszadeh M, Ghazizadeh A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: a systematic review and metaanalysis[J]. Neurosci Biobehav Rev, 2022, 140: 104792.
 [24] Dovonou A, Bolduc C, Soto Linan V, et al. Animal models of Parkinson’s disease: bridging the gap between disease hallmarks and research questions[J]. Transl Neurodegener, 2023, 12(1): 36. 
 [25] Pajares M, I Rojo A, Manda G, et al. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687.
 [26] Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42.
 [27] Han T, Xu Y, Liu H, et al. Function and mechanism of abscisic acid on microglia-induced neuroinflammation in Parkinson’s disease[J]. Int J Mol Sci, 2024, 25(9): 4920.
 [28] Liddelow SA, Guttenplan KA, Clarke L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487.
 [29] Gao J, Zhang W, Chai X, et al. Asparagine endopeptidase deletion ameliorates cognitive impairments by inhibiting proinflammatory microglial activation in MPTP mouse model of Parkinson disease[J]. Brain Res Bull, 2022, 178: 120-130.

基金

国家自然科学基金(32200958)

PDF(5835 KB)

Accesses

Citation

Detail

段落导航
相关文章

/