网络游戏障碍对青少年大脑结构和功能影响的研究进展

易红尧 袁晓帆 张荣兰 陈鸿 杨帆 李健 陈红

解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 364-370.

PDF(4143 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(4143 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 364-370. DOI: 10.16098/j.issn.0529-1356.2025.03.016
综述

网络游戏障碍对青少年大脑结构和功能影响的研究进展

  • 易红尧1,2 袁晓帆2 张荣兰2,3 陈鸿4 杨帆1,2 李健3* 陈红1,2* 
作者信息 +

Research progress on the impact of internet gaming disorder on adolescent brain structure and function

  • YI Hong-yao 1,2  YUAN Xiao-fan ZHANG Rong-lan 2,3  CHEN Hong 4  YANG Fan 1,2  LI Jian3*  CHEN  Hong1,2* 
Author information +
文章历史 +

摘要

 随着互联网的快速发展,青少年网络游戏障碍(IGD)问题逐渐凸显,IGD对他们的身体和心理健康造成了严重危害,且戒断和治疗难度较大。2019年,世界卫生组织(WHO)更是将游戏障碍(gaming disorder,GD)正式列入诊断范畴,并纳入《国际疾病分类》第11版。在我国,青少年网民数量已接近2亿,IGD患者数量较大,亟需在关于IGD的认知及治疗上取得突破。国内外研究表明,IGD对青少年的心身伤害与前额叶、边缘系统、纹状体等结构的异常激活及功能连接损害有关,进而造成神经认知障碍,执行功能障碍,情绪调节困难,奖惩反馈异常,行为异常等功能障碍。因此,本文中我们旨在通过对近年来IGD的研究文献进行系统性的综述,借助神经生理影像学的研究手段,整体梳理IGD对青少年大脑结构和功能的改变,以提升对该疾病病理生理改变的认识,进一步辅助临床诊疗应用及研究设计。 

Abstract

With the rapid development of the Internet, the problem of internet gaming disorder (IGD) among adolescents has gradually become prominent. IGD has caused serious harm to their physical and mental health, and it is difficult to withdraw and treat. In 2019, the World Health Organization (WHO) officially listed Gaming Disorder (GD) in the diagnostic category and included it in the 11th edition of the International Classification of Diseases. In China, the number of adolescent internet users has approached 200 million, and the number of IGD patients is relatively large. It is urgent to make breakthroughs in the cognition and treatment of IGD. Domestic and foreign studies have shown that IGD’s physical and psychological harm to adolescents is related to the abnormal activation and functional connection damage of structures such as the prefrontal lobe, limbic system, and striatum, which in turn causes neurocognitive disorders, executive dysfunction, difficulty in emotional regulation, abnormal reward and punishment feedback, behavioral abnormalities and other functional disorders; therefore, this article aims to systematically review the research literature on IGD in recent years, and use neurophysiological imaging research method  to sort out the changes in the brain structure and function of adolescents with IGD, in order to improve the understanding of the pathophysiology of the disease, and assist in further clinical diagnosis, treatment, application and research design. 

关键词

网络游戏障碍
/ 青少年 / 大脑结构异常 / 大脑功能异常 

Key words

 Internet gaming disorder / Adolescent / Abnormal brain structure / Abnormal brain function

引用本文

导出引用
易红尧 袁晓帆 张荣兰 陈鸿 杨帆 李健 陈红. 网络游戏障碍对青少年大脑结构和功能影响的研究进展[J]. 解剖学报. 2025, 56(3): 364-370 https://doi.org/10.16098/j.issn.0529-1356.2025.03.016
YI Hong-yao YUAN Xiao-fan ZHANG Rong-lan CHEN Hong YANG Fan LI Jian CHEN Hong. Research progress on the impact of internet gaming disorder on adolescent brain structure and function[J]. Acta Anatomica Sinica. 2025, 56(3): 364-370 https://doi.org/10.16098/j.issn.0529-1356.2025.03.016
中图分类号: R332.81   

参考文献

 [1] China  Internet Network Information Center (CNNIC). The 52nd Statistical Report on China’s Internet Development [R/OL]. (2023-8) [2024-03-17]. (in Chinese) 
中国互联网络信息中心(CNNIC).第52次中国互联网络发展状况统计报告[R/OL].(2023-8)[2024-03-17].
 [2] Yao  NSh,Yan L. Minors’ problematic internet use: risk factors and coping strategies[J]. Afterschool Education in China, 2024,(5): 38-47.  (in Chinese) 
姚泥沙,燕凌. 未成年人问题性网络使用:风险因素与应对策略[J]. 中国校外教育, 2024, (5): 38-47.
 [3] Fang  Y, Ji WM, Shen J, et al. Annual Report on the Internet Use of Chinese Minors (2023)[R]. Beijing: Social Sciences Academic Press (China),2023.  (in Chinese) 
方勇,季为民,沈杰,等.中国未成年人互联网运用报告(2023)[R].北京:社会科学文献出版社,2023.
 [4] Gao  YX, Wang JY, Dong GH. The prevalence and possible risk factors of internet gaming disorder among adolescents and young adults:systematic reviews and meta-analyses[J]. J Psychiatr Res, 2022, 154: 35-43.
 [5] Khor  E, Mcnamara N, Columb D, et al. Neuroimaging findings in adolescent gaming disorder: a systematic review[J]. Ir J Psychol Med, 2023: 1-13.
 [6] Weinstein  A, Lejoyeux M. Neurobiological mechanisms underlying internet gaming disorder[J]. Dialogues Clin Neurosci, 2020, 22(2): 113-126.
 [7] Schettler  L, Thomasius R, Paschke K. Neural correlates of problematic gaming in adolescents: a systematic review of structural and functional magnetic resonance imaging studies[J]. Addict Biol, 2022, 27(1): e13093.
 [8] Yang  JX, Hao W. Consideration of diagnosis and treatment of Internet addiction(gaming disorder)[J]. Sichuan Mental Health, 2023, 36(1): 1-5. (in Chinese) 
杨洁贤,郝伟. 网络成瘾(游戏障碍)的诊疗与思考[J]. 四川精神卫生, 2023, 36(1): 1-5.
 [9] Anastasiades  PG, de Vivo L, Bellesi M, et al. Adolescent sleep and the foundations of prefrontal cortical development and dysfunction[J]. Prog Neurobiol, 2022, 218: 102338.
 [10] Mills  KL, Goddings AL, Clasen LS, et al. The developmental mismatch in structural brain maturation during adolescence[J]. Dev Neurosci, 2014, 36(3-4): 147-160.
 [11] Carlén  M. What constitutes the prefrontal cortex [J]? Science, 2017, 358(6362): 478-482.
 [12] Wu  LL, Potenza MN, Zhou N, et al. A role for the right dorsolateral prefrontal cortex in enhancing regulation of both craving and negative emotions in internet gaming disorder: A randomized trial[J]. Eur Neuropsychopharmacol, 2020, 36: 29-37.
 [13] Mohammadi  S,  Jahanshahi A,  Salehi MA. White matter microstructural changes in internet addiction disorder: a systematic review of diffusion tensor imaging studies [J]. Addict Behav,2023,143:107690.
 [14] Zhang  J, Hu Y, Li H, et al. Altered brain activities associated with cue reactivity during forced break in subjects with Internet gaming disorder[J]. Addict Behav, 2020, 102: 106203.
 [15] Zhang  J, Dong H, Zhao Z, et al. Altered neural processing of negative stimuli in people with internet gaming disorder: fMRI evidence from the comparison with recreational game users[J]. J Affect Disord, 2020, 264: 324-332.
 [16] Qin  C, Feng S, Chen Y, et al. Enhanced Pavlovian-to-instrumental transfer in internet gaming disorder[J]. J Behav Addict, 2023, 12(2): 471-479.
 [17] Kim  H, Ha J, Chang WD, et al. Detection of craving for gaming in adolescents with internet gaming disorder using multimodal biosignals[J]. Sensors (Basel), 2018, 18(1): 102.
 [18] Zhang  J, Chen S, Jiang Q, et al. Disturbed craving regulation to gaming cues in internet gaming disorder: Implications for uncontrolled gaming behaviors[J]. J Psychiatr Res, 2021, 140: 250-259.
 [19] Hiser  J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology[J].Biol Psychiatry, 2018, 83(8):638-647.
 [20] Hiser J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology[J].Biol Psychiatry, 2018, 83(8):638-647.
 [21] Zhou  WR, Wang M, Zheng H, et al. Altered modular segregation of brain networks during the cue-craving task contributes to the disrupted executive functions in internet gaming disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 107: 110256.
 [22] Chen  S, Wang M, Dong H, et al. Internet gaming disorder impacts gray matter structural covariance organization in the default mode network[J]. J Affect Disord, 2021, 288: 23-30.
 [23] Kim  SJ, Kim MK, Shin YB, et al. Differences in resting-state functional connectivity according to the level of impulsiveness in patients with internet gaming disorder[J]. J Behav Addict, 2021, 10(1): 88-98.
 [24] Liu  S, Lu Y, Li S, et al. Resting-state functional connectivity within orbitofrontal cortex and inferior frontal gyrus modulates the relationship between reflection level and risk-taking behavior in internet gaming disorder[J]. Brain Res Bull, 2022, 178: 49-56.
 [25] Zhou  X, Wu R, Liu C, et al. Higher levels of (internet) gaming disorder symptoms according to the WHO and APA frameworks associate with lower striatal volume[J]. J Behav Addict, 2020, 9(3): 598-605.
 [26] Shin  YB, Kim H, Kim SJ, et al. A neural mechanism of the relationship between impulsivity and emotion dysregulation in patients with Internet gaming disorder[J]. Addict Biol, 2021, 26(3): e12916.
 [27] Braun  K. The prefrontal-limbic system: development, neuroanatory, function, and implications for socipemotional development[J]. Clin Perinatol, 2011, 38(4): 685-702.
 [28] Esperidi?o-Antonio  V, Majeski-Colombo M, Toledo-Monteverde D, et al. Neurobiology of emotions: an update[J]. Int Rev Psychiatry, 2017, 29(3): 293-307.
 [29] Wang  C, Zhang Z, Che L, et al. The gray matter volume in superior frontal gyrus mediates the impact of reflection on emotion in Internet gaming addicts[J]. Psychiatry Res Neuroimaging, 2021, 310: 111269.
 [30] Dong  GH, Wang M, Zheng H, et al. Disrupted prefrontal regulation of striatum-related craving in Internet gaming disorder revealed by dynamic causal modeling: results from a cue-reactivity task[J]. Psychol Med, 2021, 51(9): 1549-1561.
 [31] Lee  D, Park J, Namkoong K, et al. Diminished cognitive control in Internet gaming disorder: a multimodal approach with magnetic resonance imaging and real-time heart rate variability[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 111: 110127.
 [32] Lee  D, Namkoong K, Lee J, et al. Dorsal striatal functional connectivity changes in internet gaming disorder: a longitudinal magnetic resonance imaging study[J]. Addict Biol, 2021, 26(1): e12868.
 [33] Wang  M, Zheng H, Zhou W, et al. Persistent dependent behaviour is accompanied by dynamic switching between the ventral and dorsal striatal connections in internet gaming disorder[J]. Addict Biol, 2021, 26(6): e13046.
 [34] Chen  Y, Han F, Wang W, et al. Digital anatomy ofnucleus accumbens in the human brain[J]. Acta Anatomica Sinica, 2014, 45(3): 350-353.  (in Chinese) 
陈禹,韩锋,王伟,等. 人脑伏隔核的数字解剖[J]. 解剖学报,2014, 45(3): 350-353.
 [35] Lee  J, Lee D, Namkoong K, et al. Aberrant posterior superior temporal sulcus functional connectivity and executive dysfunction in adolescents with internet gaming disorder[J]. J Behav Addict, 2020, 9(3): 589-597.
 [36] Wang  L, Yang G, Zheng Y, et al. Enhanced neural responses in specific phases of reward processing in individuals with Internet gaming disorder[J]. J Behav Addict, 2021, 10(1): 99-111.
 [37] Cooper  S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction[J]. Neurotherapeutics, 2017, 14(3): 687-697.
 [38] Wen  X, Sun Y, Hu Y, et al. Identification of internet gaming disorder individuals based on ventral tegmental area restingstate functional connectivity[J]. Brain Imaging Behav, 2021, 15(4): 1977-1985.
 [39] Wang  R, Li M, Zhao M, et al. Internet gaming disorder: deficits in functional and structural connectivity in the ventral tegmental areaAccumbens pathway[J]. Brain Imaging Behav, 2019, 13(4): 1172-1181.
 [40] Lammel  S, Lim BK, Malenka RC. Reward and aversion in a heterogeneous midbrain dopamine system[J]. Neuropharmacology, 2014, 76 Pt B(0 0): 351-359.
 [41] Klar  J, Slotboom J, Lerch S, et al. Higher striatal glutamate in male youth with internet gaming disorder[J]. Eur Arch Psychiatry Clin Neurosci, 2024, 274(2): 301-309.
 [42] Chen  J, Li X, Zhang Q, et al. Impulsivity and response inhibition related brain networks in adolescents with internet gaming disorder: a preliminary study utilizing resting-state fMRI[J]. Front Psychiatry, 2020, 11: 618319.
 [43] Bae  S, Han DH, Kim SM, et al. Neurochemical correlates of internet game play in adolescents with attention deficit hyperactivity disorder: a proton magnetic resonance spectroscopy (MRS) study[J]. Psychiatry Res Neuroimaging, 2016, 254: 10-17.
 [44] Hwang  H, Hong J, Kim SM, et al. The correlation between family relationships and brain activity within the reward circuit in adolescents with Internet gaming disorder[J]. Sci Rep, 2020, 10(1): 9951.
 [45] Zhou  F, Zimmermann K, Xin F, et al. Shifted balance of dorsal versus ventral striatal communication with frontal reward and regulatory regions in cannabis-dependent males[J]. Hum Brain Mapp, 2018, 39(12): 5062-5073.
 [46] Dong  G, Wang M, Liu X, et al. Cue-elicited craving-related lentiform activation during gaming deprivation is associated with the emergence of Internet gaming disorder[J]. Addict Biol, 2020, 25(1): e12713.
 [47] Lei  W, Liu K, Chen G, et al. Blunted reward prediction error signals in internet gaming disorder[J]. Psychol Med, 2022, 52(11): 2124-2133.
 [48] Niu  X, Gao X, Zhang M, et al. Static and dynamic changes of intrinsic brain local connectivity in internet gaming disorder[J]. BMC Psychiatry, 2023, 23(1): 578.
 [49] Liu  Z, Huang P, Gong Y, et al. Altered neural responses to missed chance contribute to the risk-taking behaviour in individuals with Internet gaming disorder[J]. Addict Biol, 2022, 27(2): e13124.
 [50] Gong  L, Zhou H, Su C, et al. Self-control impacts symptoms defining Internet gaming disorder through dorsal anterior cingulate-ventral striatal pathway[J]. Addict Biol, 2022, 27(5): e13210.
 [51] Dong  GH, Dong H, Wang M, et al. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder[J]. Commun Biol, 2021, 4(1): 866.
 [52] Mundorf  A, Siebert A, Desmond JE, et al. The role of the cerebellum in internet gaming disorder-a systematic review[J]. Addict Biol, 2023, 28(10): e13331.
 [53] Turel  O, He Q, Wei L, et al. The role of the insula in internet gaming disorder[J]. Addict Biol, 2021, 26(2): e12894.
 [54] Lee  D,  Namkoong K,  Lee J, et al. Preliminary evidence of altered gray matter volume in subjects with internet gaming disorder: associations with history of childhood attention-deficit/hyperactivity disorder symptoms [J]. Brain Imaging Behav, 2019,13(3):660-668.

PDF(4143 KB)

Accesses

Citation

Detail

段落导航
相关文章

/