基于瞳孔变化探究认知过程的研究进展

乔晓婷 倪子薇 刘勃志 郭雅倩 赵艳 阮彩莲 王亚云

解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 357-363.

PDF(1147 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1147 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 357-363. DOI: 10.16098/j.issn.0529-1356.2025.03.015
综述

基于瞳孔变化探究认知过程的研究进展

  • 乔晓婷1 倪子薇1 刘勃志2 郭雅倩1 赵艳1 阮彩莲1* 王亚云2* 
作者信息 +

Research progress in exploring cognitive processes based on pupil changes

  • QIAO  Xiao-ting1  NI  Zi-wei1  LIU  Bo-zhi2  GUO  Ya-qian1  ZHAO  Yan1  RUAN  Cai-lian1*  WANG  Ya-yun2* 
Author information +
文章历史 +

摘要

近年来越来越多的研究聚焦大脑认知活动与生理变量之间的相关性,瞳孔的变化被看作是认知过程中的重要靶标,成为领域研究的热点。本综述聚焦在调节瞳孔变化的3个关键脑区,通过阐述瞳孔变化与认知表现的相关神经通路来反应瞳孔变化背后的神经生理机制,综合近年来有关认知疾病中瞳孔变化的研究,旨在推动将瞳孔变化应用于未来认知的科学领域。 

Abstract

 In recent years, more and more researches has focused on the correlation between cognitive activity and physiological variables. The change of pupil is regarded as an important target in the cognitive process, and has become a hot research field. This review focuses on the three key brain regions that regulate pupil change, and reflects the neurophysiological mechanism behind pupil change by elaborating the neural pathways related to pupil change and cognitive performance. Based on recent studies on pupil change in cognitive diseases, it aims to promote the application of pupil change in the field of cognitive science in the future. 

关键词

瞳孔变化
/ 认知过程 / 认知疾病 / 神经通路 / 瞳孔测量 /

Key words

 Pupil change / Cognitive process / Cognitive disease / Neuropathway / Pupillometry / Human

引用本文

导出引用
乔晓婷 倪子薇 刘勃志 郭雅倩 赵艳 阮彩莲 王亚云. 基于瞳孔变化探究认知过程的研究进展[J]. 解剖学报. 2025, 56(3): 357-363 https://doi.org/10.16098/j.issn.0529-1356.2025.03.015
QIAO Xiao-ting NI Zi-wei LIU Bo-zhi GUO Ya-qian ZHAO Yan RUAN Cai-lian WANG Ya-yun. Research progress in exploring cognitive processes based on pupil changes[J]. Acta Anatomica Sinica. 2025, 56(3): 357-363 https://doi.org/10.16098/j.issn.0529-1356.2025.03.015
中图分类号:      R322   

参考文献

 [1] Hess  EH, Polt JM. Pupil size in relation to mental activity during simple problemsolving[J].Science,1964,143(3611):1190-1192.
 [2] Hess  EH. Attitude and pupil size[J]. Sci Am,1965,212(1):46-54.
 [3] Strauch  C, Wang CA, Einh-user W, et al. Pupillometry as an integrated readout of distinct attentional networks[J]. Trends Neurosci,2022,45(8):635-647.
 [4] Tsukahara  JS, Engle RW. Is baseline pupil size related to cognitive ability? Yes (under proper lighting conditions) [J]. Cognition,2021,211:104643.
 [5] Ferencová  N, Vi??ovcová  Z, Bona Olexov L, et al. Eye pupil-a window into central autonomic regulation via emotional/cognitive processing[J]. Physiol Res, 2021,70(Suppl4): S669-S682.
 [6] Dhingra  D, Kaur S, Ram J. Illicit drugs: effects on eye[J]. Indian J Med Res, 2019,150(3):228-238.
 [7] Ha  A, Kim SJ, Shim SR, et al. Efficacy and safety of 8 atropine concentrations for myopia control in children: a network meta-analysis[J]. Ophthalmology, 2022,129(3):322-333.
 [8] van  der Linden D, Tops M, Bakker AB. The neuroscience of the flow state: involvement of the locus coeruleus norepinephrine system[J]. Front Psychol, 2021,12:645498. 
 [9] Feng  ZhX, Zhang W. Nucleus locus coeruleus, an important nuclear mass in general anesthesia [J]. Journal of Clinical Anesthesiology, 2018,34(12):1231-1233.  (in Chinese) 
冯振鑫,张卫.全身麻醉的重要核团——蓝斑核[J].临床麻醉学杂志,2018,34(12):1231-1233.
 [10] Ma  HT, Zhang HC, Zuo ZF, et al. Heterogeneous organization of Locus coeruleus: An intrinsic mechanism for functional complexity[J]. Physiol Behav, 2023, 268:114231. 
 [11] Viglione  A, Mazziotti R, Pizzorusso T. From pupil to the brain: new insights for studying cortical plasticity through pupillometry[J]. Front Neural Circuits, 2023, 17:1151847. 
 [12] McBurney-Lin  J, Lu J, Zuo Y, et al. Locus coeruleus-norepinephrine modulation of sensory processing and perception: a focused review[J]. Neurosci Biobehav Rev, 2019,105:190-199. 
 [13] Van  Egroo M, Koshmanova E, Vandewalle G, et al. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: implications for aging and Alzheimer’s disease[J]. Sleep Med Rev, 2022,62:101592. 
 [14] Suárez-Pereira  I, Llorca-Torralba M, Bravo L, et al. The Role of the locus coeruleus in pain and associated stress-related disorders[J]. Biol Psychiatry, 2022, 91(9): 786-797.
 [15] Joshi S, Gold JI. Pupil size as a window on neural substrates of cognition[J]. Trends Cogn Sci, 2020, 24(6): 466-480.
 [16] Huerta  M, Harting J. Connectional organization of the superior colliculus[J]. Trends Neurosci,1984,7:286-289.
 [17] May PJ, Warren S, Bohlen MO, et al. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei[J]. Brain Struct. Funct, 2016, 221(8): 4073-4089.
 [18] Wang  CA, Boehnke SE, White BJ, et al. Microstimulation of the monkey superior colliculus induces pupil dilation without evoking saccades[J]. J Neurosci, 2012, 32(11): 3629-3636.
 [19] Liu  X, Huang H, Snutch TP, et al. The superior colliculus: cell types, connectivity, and behavior[J]. Neurosci Bull, 2022,38(12):1519-1540.
 [20] Rees  H, Roberts MHT. The anterior pretectal nucleus: a proposed role in sensory processing[J]. Pain, 1993,53(2):121-135.
 [21] Gamlin  PD. The pretectum: connections and oculomotor-related roles[J]. Prog Brain Res, 2006, 151: 379-405. 
 [22] Jordan  R, Keller GB. The locus coeruleus broadcasts prediction errors across the cortex to promote sensorimotor plasticity[J]. Elife, 2023,12: RP85111. 
 [23] Megemont  M, McBurneyLin J, Yang H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity[J]. Elife, 2022, 11: e70510.
 [24] Poe  GR, Foote S, Eschenko O, et al. Locus coeruleus: a new look at the blue spot[J]. Nat Rev Neurosci, 2020, 21(11): 644-659.
 [25] Maness  EB, Burk JA, McKenna JT, et al. Role of the locus coeruleus and basal forebrain in arousal and attention[J]. Brain Res Bull, 2022,188:47-58.
 [26] Frase  L, Feige B, Gioia I, et al. No alterations in potential indirect markers of locus coeruleus-norepinephrine function in insomnia disorder[J]. J Sleep Res, 2023,32(4): e13872.
 [27] Beatty  J. Task-evoked pupillary responses, processing load, and the structure of processing resources[J]. Psychol Bull,1982,91(2):276-292.
 [28] Aston-Jones  G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance[J]. Annu Rev Neurosci, 2005,28: 403-450. 
 [29] Verberne  AJ. Cuneiform nucleus stimulation produces activation of medullary sympathoexcitatory neurons in rats[J]. Am J Physiol,1995,268(3 Pt 2): R752-R758.
 [30] Gamlin  PD, Zhang H, Clarke RJ. Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey[J]. Exp Brain Res,1995,106(1):169-176.
 [31] Berman  N. Connections of the pretectum in the cat[J]. J Comp Neurol, 1977,174(2):227-254.
 [32] Verschooren  S, Egner T. When the mind’s eye prevails: the internal dominance over external attention (IDEA) hypothesis[J]. Psychon Bull Rev, 2023, 30(5): 1668-1688.
 [33] Gresch  D, Boettcher SEP, van Ede F, et al. Shifting attention between perception and working memory[J]. Cognition, 2024,245:105731.
 [34] Hautekiet  C, Verschooren S, Langerock N, et al. Attentional switching between perception and memory: examining asymmetrical switch costs[J]. Atten Percept Psychophys, 2023,85(5):1398-1408.
 [35] Strauch C, Romein C, Naber M, et al. The orienting response drives pseudoneglect-evidence from an objective pupillometric method[J]. Cortex, 2022,151:259-271.
 [36] Zokaei  N, Board AG, Manohar SG, et al. Modulation of the pupillary response by the content of visual working memory[J]. Proc Natl Acad Sci USA, 2019, 116(45): 22802-22810.
 [37] Smith  FW, Smith ML. Decoding the dynamic representation of facial expressions of emotion in explicit and incidental tasks[J]. Neuroimage, 2019, 195: 261-271.
 [38] Peters  JR, Eisenlohr-Moul TA, Walsh EC, et al. Exploring the pathophysiology of emotionbased impulsivity: the roles of the sympathetic nervous system and hostile reactivity[J]. Psychiatry Res, 2018, 267: 368-375.
 [39] Chen  WH, Lien CC, Chen CC. Neuronal basis for pain-like and anxiety-like behaviors in the central nucleus of the amygdala[J]. Pain, 2022,163(3): e463-e475.
 [40] Neugebauer  V, Mazzitelli M, Cragg B, et al. Amygdala, neuropeptides, and chronic painrelated affective behaviors[J]. Neuropharmacology, 2020,170:108052.
 [41] Su  XY, He JP, Cui JM, et al. Effect of estradiol on depressive behavior in ovariectomized rats and its possible mechanism of action [J]. Acta Anatomica Sinica, 2023, 54(1): 36-41.  (in Chinese) 
 苏晓云,贺继平,崔建梅,等.雌二醇对去卵巢大鼠抑郁行为的影响及其可能的作用机制[J].解剖学报, 2023, 54(1): 36-41.
 [42] Paré D. Role of the basolateral amygdala in memory consolidation[J]. Prog Neurobiol, 2003, 70(5): 409-420.
 [43] Burley  DT, Gray NS, Snowden RJ. Emotional modulation of the pupil response in psychopathy[J]. Personal Disord, 2019,10(4):365-375.
 [44] Grueschow  M, Stenz N, Thrn H, et al. Real-world stress resilience is associated with the responsivity of the locus coeruleus[J]. Nat Commun, 2021, 12(1): 2275.
 [45] Jia  JP,Hou TT. Advances in the pathogenesis and treatment of Alzheimer’s disease [J]. National Medical Journal of China, 2018, 98(29): 2351-2356.  (in Chinese) 
贾建平, 侯婷婷. 阿尔茨海默病发病机制及治疗进展 [J]. 中华医学杂志, 2018, 98(29): 2351-2356.
 [46]Barto?ová O, Bonnet C, Ulmanov O, et al. Pupillometry as an indicator of L-DOPA dosages in Parkinson’s disease patients[J]. J Neural Transm (Vienna), 2018,125(4):699-703.
 [47] Tsitsi P, Nilsson M, Waldthaler J, et al. Pupil light reflex dynamics in Parkinson’s disease[J]. Front Integr Neurosci, 2023,17:1249554.
 [48] Zhang ZE, Zhang Y, Li ZhG. Research progress of ocular symptoms and signs of Parkinson’s disease [J]. Chinese Journal of Neurology, 2020, 53(3):5.  (in Chinese) 
张子恩,张煜,刘振国.帕金森病眼部症状和体征的研究进展[J].中华神经科杂志, 2020, 53(3):5.
 [49] Fattal J, Brascamp JW, Slate RE, et al. Blunted pupil light reflex is associated with negative symptoms and working memory in individuals with schizophrenia[J]. Schizophr Res, 2022,248:254-262. 
 [50] Beversdorf DQ. The role of the noradrenergic system in autism spectrum disorders, implications for treatment[J]. Semin Pediatr Neurol, 2020,35:100834. 
 [51] Keehn B, Kadlaskar G, Bergmann S, et al. Attentional disengagement and the locus coeruleus-norepinephrine system in children with autism spectrum disorder[J]. Front Integr Neurosci, 2021,15:716447.
 [52] Oshorov  AV, Alexandrova EV, Muradyan KR, et al. Pupillometry as a method for monitoring of pupillary light reflex in ICU patients[J]. Zh Vopr Neirokhir Im N N Burdenko, 2021,85(3):117-123.
 [53] Zandi  B, Lode M, Herzog A, et al. Pupilext: flexible open-source platform for high-resolution pupillometry in vision research[J]. Front Neurosci,2021,15:676220.
 [54] Romagnosi  F, Bongiovanni F, Oddo M. Eyeing up the injured brain: automated pupillometry and optic nerve sheath diameter[J]. Curr Opin Crit Care,2020,26(2):115-121.
 [55] Romagnoli  M, Stanzani Maserati M, De Matteis M, et al. Chromatic pupillometry findings in Alzheimer’s disease[J]. Front Neurosci,2020,14:780.

PDF(1147 KB)

Accesses

Citation

Detail

段落导航
相关文章

/