载距突置钉模拟治疗Sanders Ⅲ型跟骨骨折的有限元分析

唐广胜 王琪 徐垚 王冰 孙健宁 王德广

解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 315-322.

PDF(15117 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(15117 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 315-322. DOI: 10.16098/j.issn.0529-1356.2025.03.009
解剖学

载距突置钉模拟治疗Sanders Ⅲ型跟骨骨折的有限元分析

  •  唐广胜1,2 王琪2 徐垚3 王冰4 孙健宁4 王德广2* 
作者信息 +

Finite element analysis of simulated treatment of Sanders type Ⅲ calcaneal fractures with sustentacular screw placement of sustentaculum tali

  • TANG  Guang-sheng1,2  WANG  Qi2  XU  Yao3  WANG  Bing4  SUN  Jian-ning4  WANG  De-guang2* 
Author information +
文章历史 +

摘要

目的  构建应用载距突置钉模拟治疗Sanders Ⅲ型跟骨骨折的有限元分析模型,探讨治疗Sanders Ⅲ型跟骨骨折的有效性。    方法  取3例健康成年人的跟骨标本行微计算机断层扫描(Micro-CT)获取数据,Mimics 21.0、Geomagic Wrap 2017软件重建正常跟骨三维模型,SolidWorks 2017软件绘制内固定和骨折模型。将数据导入ANSYS 17.0有限元分析软件进行材料赋值及网格划分建立三维有限元模型,对各个模型施加载荷及边界约束执行有限元分析计算,提取有限元模型的受力情况与骨折端最大位移结果。    结果  采用载距突置钉方式模拟治疗Sanders Ⅲ型跟骨骨折模型是有效的,各个模型整体结构的最大应力集中于内固定上,其中涉及载距突骨折的最大应力、各骨折模型中螺钉的最大应力均位于载距突螺钉上。骨折端移位均<0.15 mm,且未出现内固定失效的情况。    结论  应用载距突置钉方式模拟治疗Sanders Ⅲ型跟骨骨折是有效的。 

Abstract

Objective  To construct a finite element analysis model for the treatment of calcaneal fracture for Sanders Ⅲ type calcaneal by using simulated sustentaculum tali sustentacular screw placement, and to explore the effectiveness of the treatment of Sanders type Ⅲ calcaneal fracture.    Methods  The finite element analysis method  was used to study the effectiveness of the treatment of Sanders Ⅲ calcaneal fracture. Three calcaneal specimens of a healthy adult were taken for Micro-CT scanning to obtain the CT sections data, then Mimics 21.0 and Geomagic Wrap 2017 software were used to reconstruct the three-dimensional model of normal calcaneal bone, and SolidWorks 2017 software was used to map the internal fixation and fracture model according to the clinical fracture cases, and simulated surgery was performed. The data obtained were imported into ANSYS 17.0 finite element analysis software for material assignment and mesh division to establish a three-dimensional finite element model. The load and boundary constraints were applied to each model to perform finite element analysis and calculation, and then the stress of the finite element model and the maximum displacement of the fracture end were extracted.  Results  The maximum stress of the overall structure of each model was concentrated on internal fixation, in which the maximum stress of sustentaculum tali fracture and the maximum stress of screws in all fracture models are located on the sustentaculum tali sustentacular screw. The displacement of fracture end in each finite element model was less than 0.15 mm, and no internal fixation failure occurred.  Conclusion  It is effective to simulate the treatment of calcaneal fracture of Sanders type Ⅲ by using of sustentaculum tali sustentacular screw.  

关键词

载距突置钉
/ Sanders Ⅲ型跟骨骨折 / 三维重建 / 有限元分析 / 模拟治疗 / 人 

Key words

Sustentacular screw placement of sustentaculum tali
/ Sanders type Ⅲ calcaneal fracture / Three-dimensional reconstruction / Finite element analysis / Simulated treatment / Human

引用本文

导出引用
唐广胜 王琪 徐垚 王冰 孙健宁 王德广. 载距突置钉模拟治疗Sanders Ⅲ型跟骨骨折的有限元分析[J]. 解剖学报. 2025, 56(3): 315-322 https://doi.org/10.16098/j.issn.0529-1356.2025.03.009
TANG Guang-sheng WANG Qi XU Yao WANG Bing SUN Jian-ning WANG De-guang.
Finite element analysis of simulated treatment of Sanders type Ⅲ calcaneal fractures with sustentacular screw placement of sustentaculum tali
[J]. Acta Anatomica Sinica. 2025, 56(3): 315-322 https://doi.org/10.16098/j.issn.0529-1356.2025.03.009

参考文献

 [1] Zhang  L, Li ZhQ, Tang XG, et al. Anatomic classification of the sustentaculum tali and its characteristics analysis [J]. Acta Anatomica Sinica, 2022,53(4):515-519. (in Chinese) 
张磊,李枝青,唐小高,等. 载距突解剖形态学分型及特征分析[J]. 解剖学报,2022,53(4):515-519.
 [2] Xu  Z, Sun W, Li P, et al. Modified Ni-Nail and C-Nail systems for intra-articular fractures of the calcaneus: a biomechancial study[J]. Injury, 2022, 53(12):3904-3911.
 [3] Wang  C. Hollow screw fixation of type Ⅱ avulsion fractures of the calcaneal tuberosity using the finite element analysis[J]. Medicine (Baltimore), 2023, 102(20):e33816.
 [4] Meena  S, Gangary SK, Sharma P. Review article: operative versus nonoperative treatment for displaced intraarticular calcaneal fracture: a meta-analysis of randomised controlled trials[J]. J Orthop Surg (Hong Kong), 2016, 24(3):411-416.
 [5] Ren  W, Zhang K, Zhao Z, et al. Biomechanical characteristics of Sanders type Ⅱ and Ⅲ calcaneal fractures fixed by open reduction and internal fixation and percutaneous minimally invasive fixation[J]. J Orthop Surg Res, 2024, 19(1):166.
 [6] Wang  B, Zhu AX, Shi C, et al. An applied research on precise sustentacular screw placement based on anatomical division of the anterior lateral wall of calcaneus and the sustentaculum tali[J]. Chinese Journal of Orthopaedic Trauma, 2022,24(10):848-855. (in Chinese) 
王冰,朱爱祥,史册,等. 基于跟骨前部外侧壁和载距突解剖分区的载距突精准置钉技术的应用研究[J]. 中华创伤骨科杂志,2022,24(10):848-855.
 [7] Liao  LQ, Chen C, Wu K, et al. Anatomy of the safe zone of sustentaculum tali screw fixation[J]. Acta Anatomica Sinica, 2020,51(4):566-569. (in Chinese) 
廖立青,陈尘,武凯,等. 载距突置钉安全区域的解剖学特征[J]. 解剖学报,2020,51(4):566-569.
 [8] Bernasconi  A, Iorio P, Ghani Y, et al. Use of intramedullary locking nail for displaced intraarticular fractures of the calcaneus: what is the evidence[J]? Arch Orthop Trauma Surg, 2022, 142(8):1911-1922.
 [9] Coravos  A, Goldsack JC, Karlin DR, et al. Digital medicine: a primer on measurement[J]. Digit Biomark, 2019, 3(2):31-71.
 [10] Haroske  G, M-rz M, Oemig F. Document standards for pathology reports in digital medicine [J]. Pathologe, 2020, 41(1):52-59.
 [11] Briganti  G, Le Moine O. Artificial intelligence in medicine: today and tomorrow[J]. Front Med (Lausanne), 2020, 7:27.
 [12] Lohse  LM, Vassholz M, T-pperwien M, et al. Spectral μCT with an energy resolving and interpolating pixel detector[J]. Opt Express, 2020, 28(7):9842-9859.
 [13] Pires  LF, Auler AC, Roque WL, et al. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles[J]. Geoderma, 2020, 362:114103.
 [14] Pratt  RB, Castro V, Fickle JC, et al. Factors controlling drought resistance in grapevine (Vitis vinifera, chardonnay): application of a new Micro-CT method to assess functional embolism resistance[J]. Am J Bot, 2020, 107(4):618-627.
 [15] De  Maeseneer M, Madani H, Lenchik L, et al. Normal anatomy and compression areas of nerves of the foot and ankle: US and MR imaging with anatomic correlation[J]. Radio graphics, 2015, 35(5):1469-1482.
 [16] Song  G, Gu W, Shi Z, et al. Finite element analyses of three minimally invasive fixation techniques for treating Sanders type Ⅱ intra-articular calcaneal fractures[J]. J Orthop Surg Res, 2023, 18(1):902.
 [17] Ma  R, Shaikh AB, Zhang Q, et al. Comparative biomechanical analysis of anterior process locking plate alone versus combined with percutaneous cannulated screw fixation for sanders type Ⅱ calcaneal fractures: a finite element study[J]. Med Sci Monit, 2023, 29:e940300.
 [18] P?nzaru  RM, Pav?l SD, Per?ea M, et al. Biomechanical comparison of conventional plate and the C-Nail? system for the treatment of displaced intra-articular calcaneal fractures: a finite element analysis[J]. J Pers Med, 2023, 13(4):587.
 [19] Sanders  R, Fortin P, DiPasquale T, et al. Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification[J]. Clin Orthop Relat Res, 1993, (290):87-95.
 [20] Qiang  MF, Singh RK, Chen YX, et al. Computational biomechanical analysis of postoperative calcaneal fractures with different placement of the sustentaculum screw[J]. Orthop Surg, 2020, 12(2):661-667.
 [21] Gil  Monz ER, Liew I, Tadikonda P, et al. Optimal posterior screw placement configuration in Sanders 2B calcaneal fractures: a biomechanical study[J]. Rev Esp Cir Ortop Traumatol, 2023, 67(2):T144-T152.
 [22] Steinhausen  E, Martin W, Lefering R, et al. C-Nail versus plate osteosynthesis in displaced intra-articular calcaneal fractures-a comparative retrospective study[J]. J Orthop Surg Res, 2021, 16(1):203.
 [23] Wang  B, Zhu AX, Zhu YC, et al. Imaging anatomic study on axial X-ray projection of sustentaculum tali[J]. Chinese Journal of Anatomy and Clinics, 2018,23(1):14-20. (in Chinese) 
王冰,朱爱祥,朱裕成,等. 载距突轴向X线投照的影像解剖学研究[J]. 中华解剖与临床杂志,2018,23(1):14-20.
 [24] Szczepanowska-Wolowiec  B, Sztandera P, Kotela I, et al. Body weight-dependent foot loads, assessed in terms of BMI and adiposity, in school-aged children: a cross sectional study[J]. Sci Rep, 2020, 10(1):12360.
 [25] Soeur  R, Remy R. Fractures of the calcaneus with displacement of the thalamic portion[J]. J Bone Joint Surg Br, 1975, 57(4):413-421.
 [26] Peng  Y, Liu J, Zhang G, et al. Reduction and functional outcome of open reduction plate fixation versus minimally invasive reduction with percutaneous screw fixation for displaced calcaneus fracture: a retrospective study[J]. J Orthop Surg Res, 2019, 14(1):124.
 [27] Fontanella  CG, Matteoli S, Carniel EL, et al. Investigation on the load-displacement curves of a human healthy heel pad: in vivo compression data compared to numerical results[J]. Med Eng Phys, 2012, 34(9):1253-1259.
 [28] Ouyang  H, Deng Y, Xie P, et al. Biomechanical comparison of conventional and optimised locking plates for the fixation of intraarticular calcaneal fractures: a finite element analysis[J]. Comput Methods Biomech Biomed Engin, 2017, 20(12):1339-1349.
 [29] Ma  D, Huang L, Liu B, et al. Efficacy of sinus tarsal approach compared with conventional l-shaped lateral approach in the treatment of calcaneal fractures: a meta-analysis[J]. Front Surg, 2021, 7:602053.
 [30] Chen  FX, Jian GJ, Huang ZhY, et al. A finite element analysis for the treatment of various types of calcaneal fractures in Sanders Ⅱ and Ⅲ by using the new calcaneal minimally invasive anatomical plate[J]. Electronic Journal of Foot and Ankle Surgery, 2019,6(4):27-33. (in Chinese) 
陈飞雄,简国坚,黄哲元,等. 新型跟骨微创解剖接骨板治疗Sanders Ⅱ、Ⅲ型中各亚型跟骨骨折的有限元分析[J]. 足踝外科电子杂志,2019,6(4):27-33.
 [31] Pang QJ, Yu X, Guo ZH. The sustentaculum tali screw fixation for the treatment of Sanders type Ⅱ calcaneal fracture: A finite element analysis[J]. Pak J Med Sci, 2014, 30(5):1099-1103.
 [32] Gu  ZQ, Pang QJ, Yu X, et al. Sustentaculum tali screw fixation for the treatment of Sanders type Ⅱ and Ⅲ calcaneal fractures[J]. Zhongguo Gu Shang, 2015, 28(1):31-35.  (in Chinese) 
顾志谦,庞清江,余霄, 等. 载距突螺钉固定术治疗SandersⅡ型和Ⅲ型跟骨骨折[J]. 中国骨伤, 2015, 28(1):31-35
 [33] Yan  H, Na HD, Park JJ, et al. Study on sustentaculum Tali fragment constancy in intraarticular calcaneus fracture[J]. J Orthop Trauma, 2023, 37(11):e422-e427.
 [34] Guo  ZH, Yan YQ, Tang Y, et al. Finite element optimization analysis of minimally invasive screw treatment for Sanders type Ⅱ calcaneal fracture[J]. Zhongguo Gu Shang, 2021, 34(2):137-142. (in Chinese) 
郭宗慧,颜勇卿,唐寅,等. Sanders Ⅱ型跟骨骨折螺钉微创治疗的有限元优化分析[J]. 中国骨伤,2021,34(2):137-142.
  [35] Li  DY, Liu B, Lu L, et al. Analysis of curative effect of treatment of displaced intra - articular calcaneal fracture with sustentaculum tali screw fixation[J]. Medicine of Anhui Province, 2020,41(10):1151-1154. (in Chinese) 
李多玉,刘彬,鹿亮,等. 跟骨载距突螺钉固定治疗移位性关节内跟骨骨折的疗效[J].安徽医学,2020,41(10):1151-1154.

PDF(15117 KB)

Accesses

Citation

Detail

段落导航
相关文章

/