倍半萜内酯ACT001对鱼藤酮诱导帕金森病模型小鼠的神经保护作用和机制

何金晶 曾婷 韩秋琴 王谨诚 孙安阳 陆秀宏

解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 260-269.

PDF(2567 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2567 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (3) : 260-269. DOI: 10.16098/j.issn.0529-1356.2025.03.002
神经生物学

倍半萜内酯ACT001对鱼藤酮诱导帕金森病模型小鼠的神经保护作用和机制

  • 何金晶1,3 曾婷2 韩秋琴2,3 王谨诚2 孙安阳3* 陆秀宏2* 
作者信息 +

Neuroprotection effects and mechanism of sesquiterpene ACT001 on the rotenone-induced Parkinson’s disease model mice

  • HE  Jin-jing1, 3  ZENG  Ting2  HAN  Qiu-qin2,3  WANG  Jin-cheng2  SUN  An-yang3* LU  Xiu-hong2* 
Author information +
文章历史 +

摘要

目的  探索倍半萜内酯化合物ACT001对鱼藤酮 (ROT) 诱导帕金森病 (PD)模型小鼠神经病理和运动障碍的作用。   方法  SPF级C57BL/6小鼠分为 6 组:完全对照组、溶剂对照组、ROT模型组、ACT001 5 mg/kg 组(ROT+ACT001-5)、ACT001 20 mg/kg 组(ROT+ACT001-20)、左旋多巴(L-dopa)阳性对照组(ROT+L-dopa),每组9只小鼠。完全对照组给予同等剂量的生理盐水腹腔注射;溶剂对照组给予等量的ROT助溶剂但不含ROT;其余各组小鼠均采用腹腔注射ROT的方法建立PD小鼠模型,然后,不同ACT001剂量组小鼠分别腹腔注射相应剂量的ACT001,阳性对照组腹腔注射左旋多巴,连续15 d。采用旷场、转棒、爬杆、平衡木实验检测小鼠行为学变化;免疫荧光(IF)检测小鼠中脑黑质酪氨酸羟化酶(TH)阳性神经元的数量,纹状体TH阳性纤维的含量,小鼠中脑黑质小胶质细胞的活化状态;Real-time PCR检测小鼠中脑肿瘤坏死因子α (TNF-α)、白细胞介素 (IL)-1β、IL-6等炎性因子mRNA的表达水平;Western blotting检测小鼠中脑TH、核因子κB (NF-κB) p65、NF-κB 抑制因子α(IκBα)、磷酸化IκBα (p-IκBα) 等蛋白表达水平。   结果  ROT诱导的PD小鼠模型行为学方面出现运动障碍,中脑黑质中TH阳性神经元数量降低(P <0.0001),纹状体中TH阳性纤维含量降低,中脑黑质中小胶质细胞被激活,TNF-α、IL-1β、IL-6炎性因子的水平及p-IκBα、NF-κB p65蛋白表达上调。ACT001能显著改善ROT模型小鼠行为学障碍及中脑黑质损伤,升高中脑黑质TH阳性神经元的数量,增加纹状体中TH阳性纤维的含量,抑制中脑中黑质小胶质细胞的活化和TH、IκBα 蛋白表达,降低中脑TNF-α、IL-1β、IL-6等炎性因子的表达水平及NF-κB p65、p-IκBα蛋白表达水平(P <0.05)。   结论  ACT001能明显改善ROT诱导的PD小鼠行为障碍,改善多巴胺能神经元丢失现象,抑制中脑黑质小胶质细胞的活化,通过抑制NF-κB信号通路的活化,从而抑制炎症反应。

Abstract

Objective  To explore the neuroprotective effects and mechanisms of the sesquiterpene lactone compound ACT001 on rotenone (ROT) -induced Parkinson’s disease (PD) model mouse.  Methods  SPF C57BL/6 mice were randomly divided into 6 groups, including control group, solvent control group, ROT model group, ACT001 5 mg/kg group(ROT+ACT001-5), ACT001 20 mg/kg group(ROT+ACT001-20), and levodopa(L-dopa) positive control group(ROT+L-dopa),with 9 mice in each group. The control group received an equivalent amount of intraperitoneal injection of saline, the solvent control group received an equivalent amount of rotenone solvent without rotenone, the remaining groups of mice were used to establish a PD mouse model by intraperitoneal injection of rotenone. Mice in different ACT001 dosage groups received intraperitoneal injections of high and low doses of ACT001, while the positive control group received levodopa intraperitoneally for 15 consecutive days. Behavioral changes in mice were assessed using open field, rotarod, pole-climbing, and balance beam tests. Immunofluorescence (IF) assay to detect the expression of tyrosine hydroxylase (TH) neurons,content of TH-positive fibers in the striatum and to detect the activation status of nigrostriatal microglia in the mouse midbrain; Real-time PCR was employed to measure the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) in the substantia nigra of the mouse brain. Western blotting was used to measure the protein levels of TH, nuclear factor-κB (NF-κB) p65, NF-κB inhibitor α (IκBα), and phosphorylated IκBα (p-IκBα) in the substantia nigra of the mouse brain.  Results  Compared to the control group and the solvent control group, the rotenone-induced PD model group exhibited motor impairments in behavioral tests, a decrease in the number of TH positive neurons in the substantia nigra (P <0.0001), decreased levels of TH-positive fibers in the striatum, activation of midbrain substantia microglia,and elevated levels of IL-6,  IL-1β, TNF-α, p-IκBα, and NF-κB p65 expression. ACT001 significantly improved the behavioral impairments and substantia nigra damage in PD mice, increased the number of TH-positive neurons in the substantia nigra, increased levels of TH-positive fibers in the striatum, inhibition of microglial cell activation in the midbrain substantia nigra, and elevated the protein expression levels of IκBα while reducing the levels of IL-6, IL-1β, TNFα, -IκBα, and NF-κB p65 in the substantia nigra ( P<0.05). At a dose of 5 mg/kg, ACT001 significantly improved behavioral impairments in rotenone-induced PD mice, reduced the loss of dopaminergic neurons, and its mechanism may be related to the inhibition of the NF-κB  signaling pathway and the suppression of inflammation. In summary, the intervention of ACT001 in the rotenone-induced PD mouse model inhibited the inflammatory response in the midbrain, increased the number of TH-positive neurons, and augmented the population of dopaminergic neurons in the substantia nigra, exerting a protective effect on neurons.   Conclusion  ACT001 significantly improves behavioral deficits in ROT-induced PD mice, ameliorates of dopaminergic neuron loss from the midbrain substantia nigra and striatum, inhibits the activation of nigrostriatal microglia in the midbrain, and suppresses inflammatory responses by inhibiting the activation of the NF-κB signaling pathway. 

关键词

倍半萜内酯ACT001
/ 帕金森病 / 神经炎性因子 / 核因子κB 信号通路 / 免疫印迹法 / 小鼠 

Key words

Sesquiterpene lactones ACT001
/ Parkinson’s disease / Neuroinflammatory factor / Nuclear factor-κB signaling pathway / Western blotting / Mouse

引用本文

导出引用
何金晶 曾婷 韩秋琴 王谨诚 孙安阳 陆秀宏. 倍半萜内酯ACT001对鱼藤酮诱导帕金森病模型小鼠的神经保护作用和机制[J]. 解剖学报. 2025, 56(3): 260-269 https://doi.org/10.16098/j.issn.0529-1356.2025.03.002
HE Jin-jing ZENG Ting HAN Qiu-qin WANG Jin-cheng SUN An-yang LU Xiu-hong. Neuroprotection effects and mechanism of sesquiterpene ACT001 on the rotenone-induced Parkinson’s disease model mice[J]. Acta Anatomica Sinica. 2025, 56(3): 260-269 https://doi.org/10.16098/j.issn.0529-1356.2025.03.002
中图分类号:      R322.8    R685.4   

参考文献

 [1] Liu  Ch, Li H, Wang DW. Effects of dendrobium huoshanense polysaccharide on oxidative stress and inflammation in brain tissue of mice with Parkinson’s disease[J]. Journal of Jilin University (Medicine Edition), 2023, 49(1): 110-115. (in Chinese) 
刘川, 李环, 王大伟. 霍山石斛多糖对帕金森病模型小鼠脑组织氧化应激和炎症反应的影响[J]. 吉林大学学报(医学版), 2023,49(1):110-115.
 [2] Armstrong  MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review[J]. JAMA, 2020,323(6):548-560.
 [3] Simon  DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology[J]. Clin Geriatr Med, 2020,36(1):1-12.
 [4] Azar  YO, Badawi GA, Zaki HF, et al. Agmatine-mediated inhibition of NMDA receptor expression and amelioration of dyskinesia via activation of Nrf2 and suppression of HMGB1/RAGE/TLR4/MYD88/NFκB signaling cascade in rotenone lesioned rats[J]. Life Sci, 2022,311(Pt A):121049.
 [5] Huang  B, HU G, Zong X, et al. α-Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson’s disease rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway[J]. Int Immunopharmacol, 2023,115:109698.
 [6] Casta-edaAcosta J, Fischer NH, Vargas D. Biomimetic transformations of parthenolide[J]. J Nat Prod, 1993,56(1):90-98.
 [7] Li  X, Zhang Y, Wang Y, et al. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinson’s disease[J]. Front Pharmacol, 2017,8:634.
 [8] Cai  L, Gong Q, Qi L, et al. ACT001 attenuates microgliamediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway[J]. Cell Commun Signal, 2022,20(1):56.
 [9] Liu  Q, Guo X, Huang Z, et al. Antineuroinflammatory effects of dimethylaminomylide (DMAMCL, i.e., ACT001) are associated with attenuating the NLRP3 inammasome in MPTPinduced Parkinson disease in mice[J]. Behav Brain Res, 2020,383:112539.
 [10] Liu  Q, Zhang S, Zhu D, et al. The parthenolide derivative ACT001 synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson’s disease in mice[J]. Behav Brain Res, 2020,379:112337.
 [11] Innos  J, Hickey MA. Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics[J]. Chem Res Toxicol, 2021,34(5):1223-1239.
 [12] Liu  QQ. Improvement of new crystallization nanoparticles and Sesquiterpenelactones compound ACT001 on MPTP induced Parkinson’s disease in mice [D]. Tianjin:Nankai University, 2020. (in Chinese) 
刘倩倩. 新型纳米结晶载体及倍半萜内酯类化合物ACT001对MPTP诱导的帕金森病小鼠的改善作用[D]. 天津:南开大学, 2020.
 [13] He  JY, Li DD, Wen Q, et al. Synergistic effects of lipopolysaccharide and rotenone on dopamine neuronal damage in rats[J]. CNS Neurosci Ther, 2023,29(8):2281-2291.
 [14] Lubrich  C, Giesler P, Kipp M. Motor behavioral deficits in the Cuprizone model: validity of the rotarod test paradigm[J]. Int J Mol Sci, 2022,23(19):11342.
 [15] Simola  N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease[J]. Neurotox Res, 2007,11(3-4):151-167.
 [16] Mustapha  M, Mat TC. MPTP-induced mouse model of Parkinson’s  disease: a promising direction of therapeutic strategies[J]. Bosn J Basic Med Sci, 2021,21(4):422-433.
 [17] Cornelissen  T, Vilain S, Vints K, et al. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila[J]. Elife, 2018,7: e35878.
 [18] Xu  L, Li YY, Zhang JJ, et al. Neuroprotective effect and mechanism of hirsutine on 6- hydroxydopmaine induced Parkinson’s  disease model in rat[J]. Journal of Shengyang Pharmaceutical Universitys, 2023, 40(5): 613-619. (in Chinese) 
徐利, 李莹莹, 张锦军, 等. 毛钩藤碱对6-羟基多巴胺诱导的帕金森病模型大鼠神经保护作用及机制研究[J]. 沈阳药科大学学报, 2023,40(5):613-619.
 [19] Cui  TT, Cao JL, Ouyang JF, et al. Effect and Dadingfengzhu Pill on the activation of microglia cells in the substantia nigra and TLR4/My88/NF-KB signaling pathway in Parkinson’s disease model mice. [J]. Journal of traditional Chinese medicine,2023,64(9):930-938. (in Chinese) 
崔拓拓, 曹俊岭, 欧阳竞锋, 等. 大定风珠对帕金森病模型小鼠脑黑质小胶质细胞活化及TLR4/MyD88/NF-κB信号通路的影响[J]. 中医杂志, 2023,64(9):930-938.
 [20] Xu  HB, Luo Y. Triggering receptor expressed on myeloid cell-2 modulating the polarization of mouse M2 microglia with oxygen-glucose deprivation/re-oxygenation model. [J]. Acta Anatomica Sinica,2021,52(3):329-336. (in Chinese) 
胥虹贝, 罗勇. 髓样细胞激活受体2调控氧糖剥夺/复氧模型小鼠小胶质细胞向M2型极化[J]. 解剖学报, 2021,52(3):329-336.
 [21] Yu  ZhCh, Zhang XY, DU JJ, et al. Monocarboxylate transporter 1 enhancing the expression if inducible nitric oxide synthase within M1 phenotype microglia under low-glucose condition. [J]. Acta Anatomica Sinica,2022,53(3):288-294. (in Chinese) 
于哲成, 张晓艳, 杜娟娟, 等. 单羧酸转运蛋白1在低糖条件下促进M1型小胶质细胞中诱导型一氧化氮合酶表达[J]. 解剖学报, 2022,53(3):288-294.
 [22] Yang  Y, Deng P, Si Y, et al. Acupuncture at GV20 and ST36 improves the recovery of behavioral activity in rats subjected to cerebral ischemia/reperfusion injury[J]. Front Behav Neurosci, 2022,16:909512.
 [23] Kraeuter  AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior[J]. Methods Mol Biol,
2019,1916:99-103.
 [24] Chen  GE, Deng YF, Deng WR, et al. Investigation on the protective effect of Arisaema Cum Bile on MPTP-induced Parkinson’s disease model mice based on PKA signaling pathway[J]. Chinese Pharmacy, 2023, 34(15): 1809-1814. (in Chinese) 
陈桂恩, 邓雅方, 邓婉柔, 等. 基于PKA信号通路探讨胆南星对MPTP诱导帕金森病模型小鼠的保护作用[J]. 中国药房, 2023,34(15):1809-1814.
 [25] Cao  ZhK. Pathological changes and regulation of motor and non-motor symptoms of zona incerta neurons in Parkinson’s disease model mice [D]. Qingdao:Qingdao University, 2023. (in Chinese) 
曹中凯. 未定带神经元在帕金森病模型小鼠中的病理改变及对运动和非运动症状的调控[D]. 青岛:青岛大学, 2023.
 [26] Lawrence  T. The nuclear factor NF-kappa B pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009,1(6): a001651.

PDF(2567 KB)

Accesses

Citation

Detail

段落导航
相关文章

/