[1] Guzman-Martinez L, Calfío C, Farias GA, et al. New frontiers in the prevention, diagnosis, and treatment of Alzheimer’s disease[J]. J Alzheimer’s Dis, 2021, 82(s1): S51-S63.
[2] Zhang DF, Xu M, Bi R, et al. Genetic analyses of Alzheimer’s disease in China: achievements and perspectives[J]. ACS Chem Neurosci, 2019, 10(2): 890-901.
[3] Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future[J]. J Intern Med, 2018, 284(6): 643-663.
[4] Liu X, Xie X, Ren Y, et al. The role of necroptosis in disease and treatment[J]. Med Comm, 2021, 2(4): 730-755.
[5] Beretta GL, Zaffaroni N. Necroptosis and prostate cancer: molecular mechanisms and therapeutic potential[J]. Cells, 2022, 11(7): 1221.
[6] Morgan MJ, Kim YS. Roles of RIPK3 in necroptosis, cell signaling, and disease[J]. Exp Mol Med, 2022, 54(10): 1695-1704.
[7] Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2019, 21(2): 85-100.
[8] Nguyen TT, Wei S, Nguyen TH, et al. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease[J]. Exp Mol Med, 2023, 55(8): 1595-1619.
[9] Goel P, Chakrabarti S, Goel K, et al. Neuronal cell death mechanisms in Alzheimer’s disease: an insight[J]. Front Mol Neurosci, 2022, 15: 937133.
[10]Seo J, Nam YW, Kim S, et al. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators[J]. Exp Mol Med, 2021, 53(6): 1007-1017.
[11] Tonnus W, Meyer C, Paliege A, et al. The pathological features of regulated necrosis[J]. J Pathol, 2019, 247(5): 697-707.
[12] Gong YN, Guy C, Olauson H, et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences[J]. Cell, 2017, 169(2): 286-300.e16.
[13] Jaeschke H, Ramachandran A, Chao X, et al. Emerging and established modes of cell death during acetaminophen-induced liver injury[J]. Arch Toxicol, 2019, 93(12): 3491-3502.
[14] Linkermann A, Green DR. Necroptosis[J]. N Engl J Med, 2014, 370(5): 455-465.
[15] Berghe TV, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 135-147.
[16] Sahoo G, Samal D, Khandayataray P, et al. A review on caspases: key regulators of biological activities and apoptosis[J]. Mol Neurobiol, 2023, 60(10): 5805-5837.
[17] Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. Nat Rev Mol Cell Biol, 2010, 11(10): 700-714.
[18] Yuan J, Ofengeim D. A guide to cell death pathways[J]. Nat Rev Mol Cell Biol, 2024, 25(5): 379-395.
[19] Yeap HW, Chen KW. RIPK1 and RIPK3 in antibacterial defence[J]. Biochem Soc Trans, 2022, 50(6): 1583-1594.
[20] Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis[J]. FEBS J, 2021, 290(1): 37-54.
[21] Liu S, Joshi K, Denning MF, et al. RIPK3 signaling and its role in the pathogenesis of cancers[J]. Cell Mol Life Sci, 2021, 78(23): 7199-7217.
[22] Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy[J]. Pharmacol Ther, 2022, 232: 108010.
[23] Jiang Y, Chen X, Fan M, et al. TRAIL facilitates cytokine expression and macrophage migration during hypoxia/reoxygenation via ER stress-dependent NF-κB pathway[J]. Mol Immunol, 2017, 82: 123-136.
[24] Newton K, Wickliffe KE, Dugger DL, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis[J]. Nature, 2019, 574(7778): 428-431.
[25] Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J]. Nat Rev Neurosci, 2018, 20(1): 19-33.
[26] Zhu F, Zhang W, Yang T, et al. Complex roles of necroptosis in cancer[J]. J Zhejiang Univ-SCI B, 2019, 20(5): 399-413.
[27] Raden Y, Shlomovitz I, Gerlic M. Necroptotic extracellular vesicles-present and future[J]. Semin Cell Dev Biol, 2021, 109: 106-113.
[28] Riegman M, Sagie L, Galed C, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture[J]. Nat Cell Biol, 2020, 22(9): 1042-1048.
[29] Malireddi RK, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis) [J]. Front Cell Infect Microbiol, 2019, 9: 406.
[30] Yu Z, Jiang N, Su W, et al. Necroptosis: a novel pathway in neuroinflammation[J]. Front Pharmacol, 2021, 12: 701564.
[31] Newton K. RIPK1 and RIPK3: critical regulators of inflammation and cell death[J]. Trends Cell Biol, 2015, 25(6): 347-353.
[32] Tummers B, Green DR. Mechanisms of TNF-independent RIPK3-mediated cell death[J]. Biochem J, 2022, 479(19): 2049-2062.
[33] Rius-Pérez S. P53 at the crossroad between mitochondrial reactive oxygen species and necroptosis[J]. Free Radic Biol Med, 2023, 207: 183-193.
[34] Iurlaro R, Mu
ñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress[J]. FEBS J, 2015, 283(14): 2640-2652.
[35] Nixon RA. Autophagy in neurodegenerative disease: friend, foe or turncoat [J] ? Trends Neurosci, 2006, 29(9): 528-535.
[36] Belkhelfa M, Beder N, Mouhoub D, et al. The involvement of neuroinflammation and necroptosis in the hippocampus during vascular dementia[J]. J Neuroimmunol, 2018, 320: 48-57.
[37] Wójcik P, Jastrzębski MK, Zięba A, et al. Caspases in Alzheimer’s disease: mechanism of activation, role, and potential treatment[J]. Mol Neurobiol, 2024,61(7): 4834-4853.
[38] Cieri M, Vicario M, Vallese F, et al. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10): 3247-3256.
[39] Zhang R, Song Y, Su X, et al. Necroptosis and Alzheimer’s disease: pathogenic mechanisms and therapeutic opportunities[J]. J Alzheimer’s Dis, 2023, 94(s1): S367-S386.
[40] Roberts JZ, Crawford N, Longley DB. The role of ubiquitination in apoptosis and necroptosis[J]. Cell Death Differ, 2021, 29(2): 272-284.
[41] Moonen S, Koper MJ, Van Schoor E, et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons[J]. Acta Neuropathol, 2022, 145(2): 175-195.
[42] Fricker M, Tolkovsky AM, Borutaite V, et al. Neuronal cell death[J]. Physiol Rev, 2018, 98(2): 813-880.
[43] Orobets KS, Karamyshev AL. Amyloid precursor protein and Alzheimer’s disease[J]. Int J Mol Sci, 2023, 24(19): 14794.
[44] Choi SB, Kwon S, Kim JH, et al. The molecular mechanisms of neuroinflammation in Alzheimer’s disease, the consequence of neural cell death[J]. Int J Mol Sci, 2023, 24(14): 11757.
[45] Olesen MA, Quintanilla RA. Pathological impact of tau proteolytical process on neuronal and mitochondrial function: a crucial role in Alzheimer’s disease[J]. Mol Neurobiol, 2023, 60(10): 5691-5707.
[46] Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis[J]. Cell Death Dis, 2023, 14(2): 163.
[47] Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody[J]. Alzheimers Res Ther, 2021, 13(1): 80.
[48] Panza F, Seripa D, Lozupone M, et al. The potential of solanezumab and gantenerumab to prevent Alzheimer’s disease in people with inherited mutations that cause its early onset[J]. Expert Opin Biol Ther, 2017, 18(1): 25-35.
[49] Panza F, Imbimbo BP, Lozupone M, et al. Disease-modifying therapies for tauopathies: agents in the pipeline[J]. Expert Rev Neurother, 2019, 19(5): 397-408.
[50] Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534): 311-320.