基于CT三维重建的眶上裂与颈内动脉相对位置的解剖学特点

胡伟倪 张华 刘俊秀

解剖学报 ›› 2025, Vol. 56 ›› Issue (2) : 202-207.

PDF(8179 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(8179 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (2) : 202-207. DOI: 10.16098/j.issn.0529-1356.2025.02.010

基于CT三维重建的眶上裂与颈内动脉相对位置的解剖学特点

  • 胡伟倪1 张华2 刘俊秀1*  

作者信息 +

Relative positioning of the superior orbital fissure and internal carotid artery based on CT three-dimensional reconstruction

  • HU  Wei-ni1 ZHANG  Hua2  LIU  Jun-xiu1* 
Author information +
文章历史 +

摘要

目的 通过CT三维重建探讨眶上裂与颈内动脉的相对位置关系,从影像学角度为眶尖部手术的安全解剖提供参考。 方法 对64例(128侧)患者头颈部CT血管造影检查进行分析,使用Mimics 21.0软件进行三维重建,在三维立体模型上测量眶上裂内侧界、下界以及内上界至颈内动脉最前凸处、近环和远环的距离;记录患者的性别、年龄以及蝶窦气化情况等解剖变异,分析上述数据与所测结果之间的相关性。 结果 眶上裂内侧界至颈内动脉最前凸处、近环和远环的距离分别为 d1 (6.32 ± 1.98)mm、d2 (7.13 ± 2.66)mm及d3 (9.88 ± 2.29)mm;眶上裂下界至颈内动脉最前凸处、近环和远环的距离分别为 d4 (11.93 ± 2.17)mm、d5 (10.39 ± 2.36)mm及d6 (16.18 ± 2.28)mm;眶上裂内上界至颈内动脉最前凸处、近环和远环的距离分别为 d7 (7.91 ± 2.55)mm、d8(9.63 ± 2.99)mm及d9 (10.09 ± 2.72)mm。男性眶上裂与海绵窦段颈内动脉的相对距离显著大于女性;在年龄<20岁的患者中,d7~d9显著小于年龄超过20岁的患者,差异具有统计学意义。蝶窦气化类型与主要测量指标d1~d6存在相关性,而蝶窦气化程度及是否存在蝶上筛房与主要测量指标均无显著相关性。 结论 通过CT血管造影检查的三维重建对眶上裂与颈内动脉距离的测量,可以更好地评估两者之间的相对解剖关系,对于眶尖手术操作以及安全距离的把握具有临床参考价值。

Abstract

Objective  To explore the relative positioning of the superior orbital fissure and internal carotid artery through CT three-dimensional reconstruction, and to provide anatomical references for safe dissection during surgeries involving the orbital apex from a radiological perspective.   Methods  Totally 64 cases (128 sides) of head and neck CT angiography were analyzed and Mimics 21.0 software was employed for three-dimensional reconstruction. Measurements were taken on the three-dimensional models, including the distance from the inner boundary of the superior orbital fissure to the anterior convexity, proximaldural ring, and distaldural ring of the internal carotid artery. Distances were also measured from the lower boundary of the superior orbital fissure to the anterior convexity, proximaldural ring, and distaldural ring of the internal carotid artery. Additionally, measurements were taken from the upper boundary of the superior orbital fissure to the anterior convexity, proximaldural ring, and distaldural ring of the internal carotid artery. Patient demographic data such as gender, age, and sphenoid sinus aeration were recorded, and anatomical variations were analyzed in correlation with the measured result.   Results  Distances were measured as follows, d1 (6.32 ± 1.98)mm, d2 (7.13 ± 2.66)mm, and d3 (9.88 ± 2.29)mm from the inner boundary of the superior orbital fissure to the anterior convexity, proximaldural ring, and distaldural ring of the internal carotid artery, respectively. Distances were also measured as d4 (11.93 ± 2.17)mm, d5 (10.39 ± 2.36)mm, and d6 (16.18 ± 2.28)mm from the lower boundary of the superior orbital fissure to the anterior convexity, proximaldural ring, and distaldural ring of the internal carotid artery, respectively. Distances from the upper boundary of the superior orbital fissure to the anterior convexity, proximaldural ring, and distaldural ring of the internal carotid artery were measured as d7 (7.91 ± 2.55)mm, d8 (9.63 ± 2.99)mm, and d9 (10.09 ± 2.72)mm, respectively. The relative distance between the superior orbital fissure and the cavernous segment of the internal carotid artery was significantly greater in males than in females. In patients under 20 years of age, d7~d9 were significantly smaller than in patients over 20 years old, with statistically significant differences. There was a correlation between the type of sphenoid sinus aeration and the main measured parameters d1-d6, while the degree of sphenoid sinus aeration and the presence of the superior orbital fissure were not significantly correlated with the main measured parameters.  Conclusion  Three-dimensional reconstruction based on CT angiography provides a better assessment of the distance between the superior orbital fissure and internal carotid artery. This method  holds clinical reference value for orbital apex surgeries and ensures a safe dissection distance. 

关键词

 眶上裂 / 颈内动脉 / CT血管造影 / 三维重建 / 人 


Key words

Superior orbital fissure / Internal carotid artery / CT angiography / Three-dimensional reconstruction / Human

引用本文

导出引用
胡伟倪 张华 刘俊秀. 基于CT三维重建的眶上裂与颈内动脉相对位置的解剖学特点[J]. 解剖学报. 2025, 56(2): 202-207 https://doi.org/10.16098/j.issn.0529-1356.2025.02.010
HU Wei-ni ZHANG Hua LIU Jun-xiu. Relative positioning of the superior orbital fissure and internal carotid artery based on CT three-dimensional reconstruction[J]. Acta Anatomica Sinica. 2025, 56(2): 202-207 https://doi.org/10.16098/j.issn.0529-1356.2025.02.010
中图分类号: R76   

参考文献

 [1] Morard  M, Tcherekayev V, de Tribolet N. The superior orbital fissure: a microanatomical study[J]. Neurosurgery,1994, 35(6):1087-1093.
 [2] Park  Y,Kim Y. A statistical analysis of superior orbital fissure width in Korean adults using computed tomography scans[J]. Arch Craniofac Surg, 2017, 18(2): 89-91.
 [3] Hai  J, Gong S, Han K, et al. Clinical management of traumatic superior orbital fissure and orbital apex syndromes[J]. Clin Neurol Neurosurg, 2018, 165: 50-54.
 [4] Patel  AK, Tripathi A, Kumar R, et al. Anatomical and radiological study of superior orbital fissure[J]. Maedica (Bucur), 2021,16(4):599-602.
 [5] Zhao  J, Yuan XR, Jiang WX, et al. Microanatomy and operative approach to the superior orbital fissure [J]. Chinese Journal of Otorhinolaryngology-skull Base Surgery, 2004,10(6):321-323. (in Chinese) 
赵杰,袁贤瑞,姜维喜,等. 眶上裂的显微外科解剖及其手术入路[J]. 中国耳鼻咽喉颅底外科杂志, 2004,10(6):321-323.
 [6] Cheng  Q, Huang CB, Wang JY, et al. Application of 3-dimensional computerized tomography angiography for defining cavernous sinus aneurysms and intradural aneurysms involving the internal carotid artery around the anterior clinoid process[J]. World Neurosurg, 2017, 106:785-789.
 [7] Scerbak  J, Lapteva O, Sahin OS, et al. Identification of the distal dural ring and definition of paraclinoid aneurysms according to bony landmarks on 3-dimensional computed tomography angiography: a cadaveric and radiological study[J]. Oper Neurosurg (Hagerstown), 2020, 19(3):319-329.
 [8] Zhou  ChH,Xie ShQ,Wang JT, et al. Application of multimodal electromagnetic navigation in endoscopic endonasal skull base anatomical measurement of fresh cadavers [J]. Acta Anatomica Sinica, 2023,54(5):560-566. (in Chinese) 
周春辉,谢胜强,王姜婷,等.多模态电磁导航辅助新鲜尸头经鼻内镜的颅底解剖测量[J].解剖学报, 2023,54(5):560-566.
 [9] Zhang  TF,Hou LJ. Advances in clinical applied anatomy of superior orbital fissure [J].Chinese Journal of Anatomy, 2021,44(4):341-344. (in Chinese) 
张腾飞,侯立军. 眶上裂区临床应用解剖研究进展[J]. 解剖学杂志,2021,44(4):341-344.
 [10] Pirinc  B, Fazliogullari Z, Koplay M, et al. Morphometric evaluation and classification of the superior orbital fissure on 3D MDCT images[J]. Anat Sci Int, 2023,98(2):196-203.
 [11] Bounajem  MT, Rennert RC, Budohoski KP, et al. Modified lateral orbitotomy approach to lesions of the orbital apex, superior orbital fissure, cavernous sinus, and middle cranial fossa[J]. Oper Neurosurg (Hagerstown), 2023, 24(5):514-523.
 [12] Zhou  ChH, Bo B, Kong DSh, et al. Surgical anatomy of optic strut and dural rings for endoscopic endonasal surgery [J]. Journal of Clinical Neurosurgery, 2023,20(1):1-4. (in Chinese) 
周春辉,卜博, 孔东生, 等. 视柱和硬膜环的内镜解剖研究[J].临床神经外科杂志, 2023,20(1):1-4.
 [13] Griessenauer  CJ, Yalcin B, Matusz P, et al. Analysis of the tortuosity of the internal carotid artery in the cavernous sinus[J]. Childs Nerv Syst, 2015,31(6):941-944.


PDF(8179 KB)

Accesses

Citation

Detail

段落导航
相关文章

/