缺氧诱导因子-1α/水通道蛋白4通路在大鼠血脑屏障损伤后高原脑水肿中的作用

邱彩燕 索田莎 林涛 张荣福 李雪玲 孙娟

解剖学报 ›› 2025, Vol. 56 ›› Issue (2) : 163-170.

PDF(10298 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(10298 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (2) : 163-170. DOI: 10.16098/j.issn.0529-1356.2025.02.006
神经生物学

缺氧诱导因子-1α/水通道蛋白4通路在大鼠血脑屏障损伤后高原脑水肿中的作用

  • 邱彩燕 索田莎 林涛 张荣福 李雪玲 孙娟* 
作者信息 +

Effect of hypoxia inducible factor-1α/aquaporin-4 pathway in high altitude cerebral edema after blood brain barrier damage in rats

  • QIU  Cai-yan  SUO  Tian-sha  LIN  Tao  ZHANG  Rong-fu  LI  Xue-ling  SUN  Juan* 
Author information +
文章历史 +

摘要

目的 探讨缺氧诱导因子1α(HIF-1α)/水通道蛋白4(AQP4)通路在大鼠血-脑屏障损伤后高原脑水肿中的作用。方法 SPF级健康成年雄性SD大鼠(n=40)随机分为2组:对照组(Ctrl,n=20)和高原脑水肿组(HACE,n=20),Ctrl组于青海省西宁市(海拔2261 m)饲养4 d,HACE组于低压模拟舱(海拔5000 m)饲养4 d。干湿重法检测脑水含量,7.0 T小动物磁共振成像(MRI)T2加权像观察颅内结构、形态和信号改变,Nissl染色和TUNEL染色观察大鼠海马组织CA1区神经元形态变化和神经细胞凋亡,免疫组织化学染色观察大鼠海马组织CA1区免疫球蛋白G(IgG)外渗,Western blotting及免疫荧光染色检测大鼠海马组织HIF-1α、AQP4、基质金属蛋白酶9(MMP-9)、紧密连接蛋白5(claudin-5)、闭锁蛋白(occludin)、闭合小环蛋白1(ZO-1)的表达。结果 HACE组大鼠脑水含量明显升高,海马组织CA1区神经元形态萎缩变形,神经元排列紊乱、数量明显下降,神经细胞凋亡明显增加,IgG渗出增多;Western blotting及免疫荧光染色检测发现,海马组织CA1区HIF-1α、AQP4、MMP-9蛋白表达明显升高,claudin-5、occludin、ZO-1蛋白表达明显下降,差异均具有统计学意义(P<0.05)。结论 急性高原低氧通过HIF-1α/AQP4通路导致血-脑屏障破坏,进而导致高原脑水肿。

Abstract

Objective To investigate the effect and mechanism of hypoxia inducible factor-1α/aquaporin-4 (HIF-1α / AQP4) pathway in high altitude cerebral edema (HACE) after blood-brain barrier injury in rats.  Methods  Adult male SD rats (n= 40) were randomly divided into two groups: control group (Ctrl, n= 20) and high altitude cerebral edema group (HACE, n= 20). The rats in the control group were reared in Xining (altitude 2261m) for 4 days, and the rats in HACE group were reared in low-pressure simulation chamber (altitude 5000m) for 4 days. Brain water content was measured by the method  of dry and wet weight. The intracranial structure, morphology and signal changes of small animals were observed through T2 weighted image of 7.0 T MRI. The morphological changes of neurons and the apoptosis of nerve cells in the CA1 region of hippocampal tissue were observed by the staining of Nissl and TUNEL. Immunohistochemical staining was performed to observe the extravasation of immunoglobulin G (IgG). The expressions of HIF-1α, AQP4, matrix metalloproteinase-9 (MMP-9), claudin-5, occludin and zonula occludens-1(ZO-1)in the tissue of hippocampal were detected by the method  of Western blotting and immunofluorescent staining.  Results  The brain water content increased significantly in the HACE group (P < 0.05). The neurons in CA1 region of hippocampal tissue were atrophic and deformed, the arrangement of neurons was disordered in the HACE group. The number of neurons decreased significantly, the apoptosis of nerve cells increased significantly, and the IgG exudates obviously in the CA1 region of hippocampal tissue in the HACE group. The expressions of HIF-1α, AQP4 and MMP-9 proteins increased significantly, while claudin-5, occludin and ZO-1 proteins decreased significantly in the CA1 region of hippocampal tissue, which detected by the method  of Western blotting and immunofluorescent staining (P<0.05).  Conclusion  Acute high-altitude hypoxia can induce to blood-brain barrier disruption through the HIF-1α/AQP4 pathway, resulting in high-altitude cerebral edema. 

关键词

高原脑水肿 / 缺氧诱导因子1α/水通道蛋白4 / 血-脑屏障 / 免疫印迹法 / 免疫荧光 / 大鼠

Key words

High altitude cerebral edema / Hypoxia inducible factor-1α/aquaporin-4 / Blood-brain barrier / Western blotting / Immunofluorescence / Rat


引用本文

导出引用
邱彩燕 索田莎 林涛 张荣福 李雪玲 孙娟. 缺氧诱导因子-1α/水通道蛋白4通路在大鼠血脑屏障损伤后高原脑水肿中的作用[J]. 解剖学报. 2025, 56(2): 163-170 https://doi.org/10.16098/j.issn.0529-1356.2025.02.006
QIU Cai-yan SUO Tian-sha LIN Tao ZHANG Rong-fu LI Xue-ling SUN Juan. Effect of hypoxia inducible factor-1α/aquaporin-4 pathway in high altitude cerebral edema after blood brain barrier damage in rats[J]. Acta Anatomica Sinica. 2025, 56(2): 163-170 https://doi.org/10.16098/j.issn.0529-1356.2025.02.006
中图分类号: R328    R594.3   

参考文献

 [1] Burtscher  M, Hefti U, Hefti JP. High-altitude illnesses: old stories and new insights into the pathophysiology, treatment and prevention[J]. Sports Med Health Sci, 2021, 3(2): 59-69.
 [2] Burtscher  J, Mallet RT, Pialoux V, et al. Adaptive responses to hypoxia and/or hyperoxia in humans[J]. Antioxid Redox Signal, 2022, 37(13-15): 887-912.
 [3] Luks  AM, Beidleman BA, Freer L, et al. Wilderness medical society clinical practice guidelines for the prevention, diagnosis, and treatment of acute altitude illness: 2024 update[J]. Wilderness Environ Med, 2024, 35(1-_suppl): 2S-19S.
 [4] Hackett  PH, Yarnell PR, Weiland DA, et al. Acute and evolving MRI of high-altitude cerebral edema: microbleeds, edema, and pathophysiology[J]. AJNR Am J Neuroradiol, 2019, 40(3): 464-469.
 [5]Lu  H, Ai L, Zhang B. TNF-α induces AQP4 overexpression in astrocytes through the NF-κB pathway causing cellular edema and apoptosis[J]. Biosci Rep, 2022, 42(3): BSR20212224.
 [6] Toader  C, Tataru CP, Florian IA, et al. From homeostasis to pathology: decoding the multifaceted impact of aquaporins in the central nervous system[J]. Int J Mol Sci, 2023, 24(18): 14340.
 [7] Lu  Y, Chang P, Ding W, et al. Pharmacological inhibition of mitochondrial division attenuates simulated high-altitude exposure-induced cerebral edema in mice: involvement of inhibition of the NF-κB signaling pathway in glial cells[J]. Eur J Pharmacol, 2022, 929: 175137.
 [8] Xiong  A, Li J, Xiong R, et al. Inhibition of HIF-1α-AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model[J]. Sci Rep, 2022, 12(1): 2701.
 [9] McConnell  HL, Mishra A. Cells of the blood-brain barrier: an overview of the neurovascular unit in health and disease[J]. Methods Mol Biol, 2022, 2492: 3-24.
 [10] Li  Y, Li C, Luo T, et al. Progress in the treatment of high altitude cerebral edema: targeting REDOX homeostasis[J]. J Inflamm Res, 2023, 16: 2645-2660.
 [11] Li HS, Zhou YN, Li L, et al. HIF-1α protects against oxidative stress by directly targeting mitochondria[J]. Redox Biol, 2019, 25: 101109.
 [12] Jia  P, He J, Li Z, et al. Profiling of blood-brain barrier disruption in mouse intracerebral hemorrhage models: collagenase injection vs. autologous arterial whole blood infusion[J]. Front Cell Neurosci, 2021, 15: 699736.
 [13] Li  H, Huang H, Cui Y, et al. Study on the mechanism of capillary leakage caused by hypoxia-inducible factor1α through inducing high expression of matrix metalloproteinase-9[J]. J Oncol, 2021, 2021: 9130650.
 [14] Peng  Y, Yin H, Li S, et al. Transcriptome of pituitary function changes in rat model of high altitude cerebral edema[J]. Genomics, 2022, 114(6): 110519.
 [15] Kozler  P, Herynek V, Mare?ová D, et al. Effect of methylprednisolone on experimental brain edema in magnetic resonance imaging[J]. Physiol Res, 2020, 69(5): 919-926.
 [16] Sawicka  M, Szymczak RK. A fatal case of high-altitude cerebral oedema on a climbing expedition to Karakoram[J]. Travel Med Infect Dis, 2023, 51: 102493.
 [17] Merz  TM, Pichler Hefti J. Humans at extreme altitudes[J]. BJA Educ, 2021, 21(12): 455-461.
 [18] Chen  Y, He Y, Zhao S, et al. Hypoxic/ischemic inflammation, microRNAs and δ-opioid receptors: hypoxia/ischemia-sensitive versus-insensitive organs[J]. Front Aging Neurosci, 2022, 14: 847374.
 [19] Xin W, Pan Y, Wei W, et al. Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation[J]. Theranostics, 2023, 13(12): 4197-4216.
 [20] Molano  Franco D, Nieto Estrada VH, Gonzalez Garay AG, et al. Interventions for preventing high altitude illness: part 3. Miscellaneous and non-pharmacological interventions[J]. Cochrane Database Syst Rev, 2019, 4(4): CD013315.
 [21] Sun  J, Chen JW, Yang Y, et al. Effects of hypoxia preconditioning on hematology-related indexes through hypoxia inducible factor-1α/stromal cell-derived factor-1 pathway in rats[J]. Acta Anatomica Sinica, 2023, 54(5): 505-511. (in Chinese) 
孙娟, 陈敬威, 杨艺等. 缺氧预处理通过缺氧诱导因子-1α/基质细胞衍生因子-1通路对大鼠血液学相关指标的影响[J]. 解剖学报, 2023, 54(5): 505-511.
 [22] Hencz  A, Magony A, Thomas C, et al. Mild hypoxia-induced structural and functional changes of the hippocampal network[J]. Front Cell Neurosci, 2023, 17: 1277375.
 [23] Davidson  TL, Stevenson RJ. Vulnerability of the hippocampus to insults: links to blood-brain barrier dysfunction[J]. Int J Mol Sci, 2024, 25(4): 1991.
 [24] Alfieri  L, Montana A, Frisoni P, et al. Application of aquaporins as markers in forensic pathology: a systematic review of the literature[J]. Int J Mol Sci, 2024, 25(5): 2664.
 [25] Liu  X, Ding H, Li X, et al. Hypercapnia exacerbates the blood-brain barrier disruption via promoting HIF-1a nuclear translocation in the astrocytes of the hippocampus: implication in further cognitive impairment in hypoxemic adult rats[J]. Neurochem Res, 2020, 45(7): 1674-1689.


PDF(10298 KB)

Accesses

Citation

Detail

段落导航
相关文章

/