[1] Burtscher M, Hefti U, Hefti JP. High-altitude illnesses: old stories and new insights into the pathophysiology, treatment and prevention[J]. Sports Med Health Sci, 2021, 3(2): 59-69.
[2] Burtscher J, Mallet RT, Pialoux V, et al. Adaptive responses to hypoxia and/or hyperoxia in humans[J]. Antioxid Redox Signal, 2022, 37(13-15): 887-912.
[3] Luks AM, Beidleman BA, Freer L, et al. Wilderness medical society clinical practice guidelines for the prevention, diagnosis, and treatment of acute altitude illness: 2024 update[J]. Wilderness Environ Med, 2024, 35(1-_suppl): 2S-19S.
[4] Hackett PH, Yarnell PR, Weiland DA, et al. Acute and evolving MRI of high-altitude cerebral edema: microbleeds, edema, and pathophysiology[J]. AJNR Am J Neuroradiol, 2019, 40(3): 464-469.
[5]Lu H, Ai L, Zhang B. TNF-α induces AQP4 overexpression in astrocytes through the NF-κB pathway causing cellular edema and apoptosis[J]. Biosci Rep, 2022, 42(3): BSR20212224.
[6] Toader C, Tataru CP, Florian IA, et al. From homeostasis to pathology: decoding the multifaceted impact of aquaporins in the central nervous system[J]. Int J Mol Sci, 2023, 24(18): 14340.
[7] Lu Y, Chang P, Ding W, et al. Pharmacological inhibition of mitochondrial division attenuates simulated high-altitude exposure-induced cerebral edema in mice: involvement of inhibition of the NF-κB signaling pathway in glial cells[J]. Eur J Pharmacol, 2022, 929: 175137.
[8] Xiong A, Li J, Xiong R, et al. Inhibition of HIF-1α-AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model[J]. Sci Rep, 2022, 12(1): 2701.
[9] McConnell HL, Mishra A. Cells of the blood-brain barrier: an overview of the neurovascular unit in health and disease[J]. Methods Mol Biol, 2022, 2492: 3-24.
[10] Li Y, Li C, Luo T, et al. Progress in the treatment of high altitude cerebral edema: targeting REDOX homeostasis[J]. J Inflamm Res, 2023, 16: 2645-2660.
[11] Li HS, Zhou YN, Li L, et al. HIF-1α protects against oxidative stress by directly targeting mitochondria[J]. Redox Biol, 2019, 25: 101109.
[12] Jia P, He J, Li Z, et al. Profiling of blood-brain barrier disruption in mouse intracerebral hemorrhage models: collagenase injection vs. autologous arterial whole blood infusion[J]. Front Cell Neurosci, 2021, 15: 699736.
[13] Li H, Huang H, Cui Y, et al. Study on the mechanism of capillary leakage caused by hypoxia-inducible factor1α through inducing high expression of matrix metalloproteinase-9[J]. J Oncol, 2021, 2021: 9130650.
[14] Peng Y, Yin H, Li S, et al. Transcriptome of pituitary function changes in rat model of high altitude cerebral edema[J]. Genomics, 2022, 114(6): 110519.
[15] Kozler P, Herynek V, Mare?ová D, et al. Effect of methylprednisolone on experimental brain edema in magnetic resonance imaging[J]. Physiol Res, 2020, 69(5): 919-926.
[16] Sawicka M, Szymczak RK. A fatal case of high-altitude cerebral oedema on a climbing expedition to Karakoram[J]. Travel Med Infect Dis, 2023, 51: 102493.
[17] Merz TM, Pichler Hefti J. Humans at extreme altitudes[J]. BJA Educ, 2021, 21(12): 455-461.
[18] Chen Y, He Y, Zhao S, et al. Hypoxic/ischemic inflammation, microRNAs and δ-opioid receptors: hypoxia/ischemia-sensitive versus-insensitive organs[J]. Front Aging Neurosci, 2022, 14: 847374.
[19] Xin W, Pan Y, Wei W, et al. Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation[J]. Theranostics, 2023, 13(12): 4197-4216.
[20] Molano Franco D, Nieto Estrada VH, Gonzalez Garay AG, et al. Interventions for preventing high altitude illness: part 3. Miscellaneous and non-pharmacological interventions[J]. Cochrane Database Syst Rev, 2019, 4(4): CD013315.
[21] Sun J, Chen JW, Yang Y, et al. Effects of hypoxia preconditioning on hematology-related indexes through hypoxia inducible factor-1α/stromal cell-derived factor-1 pathway in rats[J]. Acta Anatomica Sinica, 2023, 54(5): 505-511. (in Chinese)
孙娟, 陈敬威, 杨艺等. 缺氧预处理通过缺氧诱导因子-1α/基质细胞衍生因子-1通路对大鼠血液学相关指标的影响[J]. 解剖学报, 2023, 54(5): 505-511.
[22] Hencz A, Magony A, Thomas C, et al. Mild hypoxia-induced structural and functional changes of the hippocampal network[J]. Front Cell Neurosci, 2023, 17: 1277375.
[23] Davidson TL, Stevenson RJ. Vulnerability of the hippocampus to insults: links to blood-brain barrier dysfunction[J]. Int J Mol Sci, 2024, 25(4): 1991.
[24] Alfieri L, Montana A, Frisoni P, et al. Application of aquaporins as markers in forensic pathology: a systematic review of the literature[J]. Int J Mol Sci, 2024, 25(5): 2664.
[25] Liu X, Ding H, Li X, et al. Hypercapnia exacerbates the blood-brain barrier disruption via promoting HIF-1a nuclear translocation in the astrocytes of the hippocampus: implication in further cognitive impairment in hypoxemic adult rats[J]. Neurochem Res, 2020, 45(7): 1674-1689.