姜黄素通过肠道微生物改善帕金森病小鼠行为缺陷

李文惠 赵志弘 王莉娟 何金晶 刘玉婷 韩秋琴

解剖学报 ›› 2025, Vol. 56 ›› Issue (2) : 143-149.

PDF(2735 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2735 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (2) : 143-149. DOI: 10.16098/j.issn.0529-1356.2025.02.003
神经生物学

姜黄素通过肠道微生物改善帕金森病小鼠行为缺陷

  • 李文惠1,2 赵志弘1 王莉娟1 何金晶1 刘玉婷1 韩秋琴1,2* 
作者信息 +

Curcumin improving behavioral deficits in Parkinson's disease mice via modulation of gut microbiota

  • LI  Wen-hui1,2  ZHAO  Zhi-hong1  WANG  Li-juan1  HE  Jin-jing1  LIU  Yu-ting1  HAN  Qiu-qin1,2* 
Author information +
文章历史 +

摘要

目的 借助粪菌移植研究姜黄素改善帕金森病(PD)小鼠行为缺陷的作用机制。 方法 腹腔注射 1-甲-基-4-苯基-1,2,3,6-四氢吡啶(MPTP)建立小鼠亚急性PD模型,收集分离模型组和80mg/kg姜黄素(Cur)模型治疗组小鼠粪便菌群。通过粪菌移植处理,将小鼠分为粪便菌群溶剂移植组(FMTcon)、模型粪便菌群移植组(FMTmodel)、MPTP模型组(model)以及模型加姜黄素粪便菌群移植组(model+FMTCur)4组。通过转棒、爬杆和旷场实验评估小鼠运动能力,通过免疫荧光观察动物脑黑质部位酪氨酸羟化酶(TH)阳性神经元表达,并检测小鼠中脑部位肿瘤坏死因子α(TNF-α)基因表达,核因子κB ( NF-κB)和核苷酸结合寡聚结构域样受体蛋白 3 (NLRP3) 通路相关蛋白表达。 结果 成功建立小鼠亚急性PD动物模型,收集分离粪便菌群。Model组表现为明显运动障碍,表现转棒维持时间缩短(P<0.05),爬杆时间延长(P<0.05),旷场内总运动距离(P<0.001)和中心区运动时间(P<0.01)明显缩短;黑质部位TH阳性神经元相对表达量显著降低(P<0.01);中脑内TNF-α mRNA表达显著升高(P<0.01),NF-κB(P<0.001)、磷酸化NF-κB(p-NF-κB)(P<0.01)、NLRP3(P<0.001)、Caspase-1(P<0.01)蛋白表达均明显升高。模型粪便菌群移植组(FMTmodel)也出现运动障碍,表现为转棒时间缩短,爬杆时间延长趋势,旷场内总运动距离明显下降(P<0.01)和中心区运动时间缩短趋势;黑质部位TH阳性神经元相对表达量明显下降(P<0.05);中脑内TNF-α mRNA表达明显升高(P<0.01),NF-κB(P<0.05)和Caspase-1(P<0.01)蛋白表达均明显升高。经姜黄素治疗组粪便菌群移植小鼠(model+FMTCur)运动能力有改善,表现为爬杆时间缩短(P<0.05),转棒维持时间(P<0.01)和中心区域运动时间(P<0.05)明显延长;黑质部位TH阳性神经元相对表达量明显增多(P<0.05);中脑内TNF-α mRNA表达明显降低(P<0.01),NF-κB(P<0.001)、p-NF-κB(P<0.01)、NLRP3(P<0.05)、Caspase-1(P<0.01)蛋白表达均明显降低。结论 PD模型小鼠粪菌移植会引起小鼠行为缺陷,黑质部位TH阳性神经元损伤,激发脑内神经炎症;姜黄素治疗后粪菌移植可以改善帕金森模型小鼠的行为缺陷,逆转黑质部位TH阳性神经元损伤,减少脑内神经炎症因子,降低NF-κB和NLRP3通路相关蛋白表达,表明姜黄素改善小鼠帕金森行为缺陷可能通过调节肠道菌群来实现。

Abstract

 Objective To explore the mechanism by which curcumin improves behavioral deficits in mice with Parkinson’s disease(PD) through fecal microbiota transplantation.   Methods A subacute model of PD in mice was induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Fecal microbiota from both the model group and the curcumin(Cur)-treated group (80 mg/kg) were collected and analyzed. The experiment involving fecal microbiota transplantation was structured into four distinct groups, fecal microbiota solvent transplantation group (FMTcon), model fecal microbiota transplantation group (FMTmodel), MPTP-induced model group (model), and model group subjected to fecal microbiota transplantation following curcumin treatment (model+FMTCur). The motor skills of the mice were assessed by using rod rotation, pole climbing experiment, and open field tests. Immunofluorescence techniques were employed to observe the expression tyrosine hydroxylase (TH)-positive neurons in the substantia nigra of the brain. Additionally, the gene expression of tumor necrosis factor-α (TNF-α) in the midbrain of mice was analyzed, alongside the protein expression of nuclear factor-κB(NF-κB) and nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3).   Results The subacute PD animal model in mice was successfully established, and fecal microbiota were separated and gathered. The model group exhibited significant motor impairment, as evidenced by a shortened rod rotation time (P<0.05), prolonged pole climbing time (P<0.05), significantly reduced total movement distance within the open field (P<0.001), and decreased time spent in the central zone (P<0.01). The relative expression level of TH+ neurons in the substantia nigra was significantly reduced (P<0.01). Moreover, mRNA expression of TNF-α in the midbrain increased significantly(P<0.01), along with significant elevations in protein expression of NF-κB (P<0.001), phosphorylated NF-κB (p-NF-κB) (P<0.01), NLRP3 (P<0.001), and Caspase-1 (P<0.01).The transplanted model microbial group (FMTmodel) also exhibited motor impairment, manifested by a trend of shortened rod rotation time, prolonged pole climbing time, a significant decrease in total movement distance within the open field (P<0.01), and a trend of shortened time spent in the central zone. The relative expression level of TH+ neurons in the substantia nigra decreased significantly(P<0.05). Additionally, mRNA expression of TNF-α in the midbrain increased significantly(P<0.01), along with notable elevations in the protein expression of NF-κB (P<0.05), and Caspase-1 (P<0.01).Treatment with curcumin in the fecal microbiota transplantation group of mice (model+FMTCur) showed improvements in motor abilities, evidenced by shortened pole climbing time (P<0.05), significantly prolonged rod rotation time (P<0.01), and extended time spent in the central zone (P<0.05). The relative expression level of TH+ dopaminergic neurons in the substantia nigra increased significantly(P<0.05). Moreover, mRNA expression of TNF-α in the midbrain decreased significantly(P<0.01), along with notable reductions in the protein expression of NF-κB (P<0.001), p-NF-κB (P<0.01), NLRP3 (P<0.05), and Caspase-1 (P<0.01).   Conclusion Fecal microbiota transplantation in PD model mice can induce behavioral deficits, damage TH+ neurons in the substantia nigra, and trigger neuroinflammation in the brain. Subsequent curcumin treatment can ameliorate these deficits, reverse damage to TH+ neurons, reduce neuroinflammatory factors, and decrease the expression of NF-κB and NLRP3 pathways. This preliminary evidence suggests that curcumin may improve Parkinsonian behavioral deficits in mice by modulating the gut microbiota. 

关键词

 帕金森病 / 粪菌移植 / 肠道菌群 / 姜黄素 / 神经炎症 / 免疫印迹法 / 小鼠

Key words

 Parkinson’s disease / Fecal microbiota transplantation / Gut microbiota / Curcumin / Neuroinflammation / Western blotting / Mouse

引用本文

导出引用
李文惠 赵志弘 王莉娟 何金晶 刘玉婷 韩秋琴. 姜黄素通过肠道微生物改善帕金森病小鼠行为缺陷[J]. 解剖学报. 2025, 56(2): 143-149 https://doi.org/10.16098/j.issn.0529-1356.2025.02.003
LI Wen-hui ZHAO Zhi-hong WANG Li-juan HE Jin-jing LIU Yu-ting HAN Qiu-qin. Curcumin improving behavioral deficits in Parkinson's disease mice via modulation of gut microbiota[J]. Acta Anatomica Sinica. 2025, 56(2): 143-149 https://doi.org/10.16098/j.issn.0529-1356.2025.02.003
中图分类号: R742   

参考文献

 [1] Kulisevsky  J. Pharmacological management of Parkinson’s disease motor symptoms: update and recommendations from an expert[J]. Rev Neurol, 2022,75(s04): S1-S10.
  [2]  Moore  K, Sengupta U, Puangmalai N, et al. Polymorphic alpha synuclein oligomers: characterization and differential detection with novel corresponding antibodies[J]. Mol Neurobiol, 2023,60(5): 2691-2705.
  [3]Margolis  KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to mood[J]. Gastroenterology, 2021, 160(5): 1486-1501.
 [4]Xu  L, Lei LF,Tan ZhX, et al. Research advances in the correlation between Parkinson’s disease and intestinal microbiota[J]. Life Science Research, 2023, 27(6): 551-558. (in Chinese) 
许龙,雷立芳,谭志霞,等. 帕金森病与肠道微生物群相关性的研究进展 [J]. 生命科学研究, 2023, 27(6): 551-558.
 [5]Klann  EM, Dissanayake U, Gurrala A, et al. The gutbrain axis and its relation to Parkinson’s disease:a review[J].Front Aging Neurosci, 2021, 13:782082.
 [6]Tan  AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease: from basic research to the clinic[J]. Nate Rev Neurol, 2022, 18(8):476-495.
 [7]Braak  H, Rüb U, Gai WP, et al. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen[J]. J Neural Transm (Vienna), 2003, 110(5):517-536.
 [8]Chidambaram  SB, Essa MM, Rathipriya AG, et al. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: tales of a vicious cycle[J]. Pharmacol Ther, 2022, 231:107988.
 [9]Pluta  R, Januszewski S, Ułamek-Kozio? M. Mutual two-way interactions of curcumin and gut microbiota[J]. Int J Mol Sci, 2020, 21(3): 1055.
 [10]Leshem  A, Horesh N, Elinav E. Fecal microbial transplantation and its potential application in cardiometabolic syndrome[J]. Front Immunol, 2019, 10: 1341.
 [11]Sun  MF, Zhu YL, Zhou ZL, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway[J]. Brain Behav Immun, 2018, 70: 48-60.
 [12]Jackson-Lewis  V, Przedborski S. Protocol for the MPTP mouse model of Parkinson’s disease[J]. Nat Protoc,2007,2(1):141-151.
 [13]Zhang  YL. Fecal microbiota transplantation from normal healthy donors alter intestinal microorganisms to promote neurologicalrecovery in the mice of traumatie brain injury[D]. Shanghai: Naval Medical University, 2022.(in Chinese) 
张叶磊. 健康供体正常菌群移植改变肠道微生物促进创伤性脑损伤小鼠神经功能恢复的研究[D]. 上海:中国人民解放军海军军医大学, 2022.
 [14]Qi  S, Yin P, Wang L, et al. Prevalence of Parkinson’s disease: a community-based study in China[J]. Mov Disord, 2021, 36(12): 2940-2944.
 [15]Wallen  ZD, Appah M, Dean MN, et al. Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens[J]. NPJ Parkinson’s Dis,2020,6:11.
 [16]Li W, Wu X, Hu X, et al. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features[J]. Sci China Life Sci,2017,60(11):1223-1233.
 [17]Lin  A, Zheng W, He Y, et al. Gut microbiota in patients with Parkinson’s disease in southern China[J]. Parkinsonism Relat Disord, 2018,53:82-88.
 [18]Han  QQ, Wan GQ, Gu XF. Detection of intestinal microbial changes in rotenone-induced Parkinson’s disease model mice[J]. Acta Anatomica Sinica,2020,51(4):507-512. (in Chinese) 
韩秋琴, 万国庆, 顾雪锋. 鱼藤酮诱导帕金森病模型小鼠体内肠道微生物的变化[J]. 解剖学报, 2020, 51 (4): 507-512.
 [19]Shen L, Liu L, Ji H. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications[J]. Food Nutr Res,2017,61(1):1361780.
 [20]Feng  WH, Wang HD, Zhang PZ, et al. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats[J]. Biochim Biophys Acta Gen Subj,2017,1861(7):1801-1812.


PDF(2735 KB)

Accesses

Citation

Detail

段落导航
相关文章

/