利拉鲁肽对百草枯诱导的小鼠帕金森病模型炎症及线粒体融合/分裂的影响

刘哲川 李坤 马帅男 孟家琪 王艳芹

解剖学报 ›› 2023, Vol. 54 ›› Issue (6) : 676-681.

PDF(1766 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1766 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (6) : 676-681. DOI: 10.16098/j.issn.0529-1356.2023.06.008
神经生物学

 利拉鲁肽对百草枯诱导的小鼠帕金森病模型炎症及线粒体融合/分裂的影响

  •   刘哲川 李坤 马帅男 孟家琪 王艳芹*
作者信息 +

Effects of liraglutide on inflammation and mitochondrial fusion/division in Parkinson’s disease model of mice induced by paraquat

  •  LIU  Zhe-chuan  LI  Kun  MA  Shuai-nan  MENG  Jia-qi  WANG  Yan-qin*
Author information +
文章历史 +

摘要

目的  探讨利拉鲁肽对百草枯(PQ)诱导的帕金森病(PD)小鼠模型保护作用以及作用机制。  方法  24只昆明种小鼠随机分为对照组、PQ组、PQ +利拉鲁肽组,每组8只。通过连续5 d腹腔注射PQ (10 mg/kg)复制PD小鼠模型,连续7 d腹腔注射利拉鲁肽(50 nmol/kg)进行干预。采用行为学方法检测小鼠自主活动能力;免疫荧光观察酪氨酸羟化酶(TH)、离子钙接头蛋白分子1(Iba1)阳性细胞数;Western blotting检测TH、胶质纤维酸性蛋白(GFAP)、线粒体融合基因2(Mfn2)、线粒体动力相关蛋白1(Drp1)蛋白的表达。  结果  与对照组相比,PQ组站立次数极显著减少(P<0.01),活动次数显著减少(P<0.05),黑质TH阳性细胞数、TH蛋白表达极显著减少(P<0.01),Iba1阳性细胞数、GFAP蛋白表达极显著增加(P<0.01),Drp1蛋白表达显著增加(P<0.05),Mfn2蛋白表达显著降低(P<0.05)。经利拉鲁肽干预后,与对照组相比,PQ +利拉鲁肽组TH阳性细胞数显著降低(P<0.05);与PQ组相比,PQ +利拉鲁肽组小鼠站立次数、活动次数显著增加(P<0.05),TH阳性细胞数、TH蛋白表达极显著增加(P<0.01),Iba1阳性细胞数极显著减少(P<0.01),GFAP蛋白表达显著减少(P<0.05),Drp1蛋白表达极显著减少(P<0.01),Mfn2蛋白表达极显著增加(P<0.01)。  结论  利拉鲁肽能减轻PQ诱导的PD模型小鼠黑质神经炎症,调节线粒体融合、分裂,减少多巴胺能神经元的丢失,具有神经保护作用。

Abstract

Objective  To investigate the protective effect and mechanism of liraglutide on the paraquat (PQ)-induced Parkinson’s disease (PD) mouse model.      Methods  Totally 24 Kunming mice were randomly divided into control group, PQ group and PQ +liraglutide group, 8 mice in each group. PD model was established by intraperitoneal injection of PQ (10 mg/kg) for 5 consecutive days, and liraglutide (50 nmol/kg) was injected intraperitoneally for 7 consecutive days. The free-standing and locomotor activity of mice were measured by behavioral method. Immunofluorescence was used to observe the number of tyrosine hydroxylase (TH) and ionized calcium binding adaptor molecule 1 (Iba1) immunoreactive cells. Western blotting was used to detect the expression of protein TH, glial fibrillary acidic protein (GFAP), mitofusin-2 (Mfn2) and dynamin-related protein 1 (Drp1).    Results  The numbers of free-standing and locomotor activity numbers decreased significantly (P<0.01, P<0.05) in PQ group compared with the control group, and the number of TH immunoreactive cells and TH protein expression in substantia nigra decreased significantly (P<0.01, P<0.01) compared with the control group, while the number of Iba1 immunoreactive cells and GFAP protein expression increased significantly (P<0.01, P<0.01) compared with the control group; the expression of Drp1 protein in PQ group was significantly higher than that in control group (P<0.05), while the Mfn2 protein expression decreased significantly (P<0.05) compared with the control group. After treatment with liraglutide, the number of TH positive cells in PQ + liraglutide group was significantly lower than that in control group (P<0.05); the numbers of free-standing and locomotor activity increased significantly (P<0.05, P<0.05) in PQ + liraglutide group compared with the PQ group, and the number of TH positive cells and expression of TH protein in PQ + liraglutide group were significantly higher than that in PQ group (P<0.01, P<0.01); while the number of Iba1 positive cells and GFAP protein expression decreased significantly (P<0.01, P<0.05) compared with the PQ group; the Drp1 protein expression decreased significantly (P<0.01) compared with the PQ group, while the expression of Mfn2 protein in PQ + liraglutide group was significantly higher than that in PQ group (P<0.01).   Conclusion  Liraglutide has neuroprotective effect by reducing neuroinflammation in substantia nigra, regulating mitochondrial fusion and fission.

关键词

帕金森病 / 利拉鲁肽 / 百草枯 / 炎症 / 线粒体融合/分裂 / 免疫荧光 / 免疫印迹法 / 小鼠

Key words

Parkinson’s disease / Liraglutide / Paraquat / Inflammation / Mitochondrial fusion/division / Immunofluorescence / Western blotting / Mouse

引用本文

导出引用
刘哲川 李坤 马帅男 孟家琪 王艳芹.

 利拉鲁肽对百草枯诱导的小鼠帕金森病模型炎症及线粒体融合/分裂的影响

[J]. 解剖学报. 2023, 54(6): 676-681 https://doi.org/10.16098/j.issn.0529-1356.2023.06.008
LIU Zhe-chuan LI Kun MA Shuai-nan MENG Jia-qi WANG Yan-qin. Effects of liraglutide on inflammation and mitochondrial fusion/division in Parkinson’s disease model of mice induced by paraquat[J]. Acta Anatomica Sinica. 2023, 54(6): 676-681 https://doi.org/10.16098/j.issn.0529-1356.2023.06.008
中图分类号: R742. 5    

参考文献

1Tysnes OB, Storstein A. Epidemiology of Parkinsons disease J. J Neural Transm (Vienna), 2017,124(8):901-905. 

2Beitz JM. Parkinson disease: a reviewJ. Front Biosci (Schol Ed), 2014, (1):65-74. 

3Sun X, Liang JQ, He JCh, et al. Research progress of animal models of Parkinsons disease induced by neurotoxinJ. Journal of Medical Research, 2020, 49(12):21-24.in Chinese

孙雪, 梁建庆, 何建成, . 神经毒素诱导帕金森病动物模型的研究进展[J. 医学研究杂志, 2020, 49(12):21-24. 

4Wang TT, Chen ZhCh, Ye X, et al. Effect of allopregnenolone on the dopaminergic neurons in the substantia nigra of Parkinsons disease miceJ. Acta Anatomisica Sinica, 2020, 51(4):473-482.in Chinese

王彤彤, 陈治池, 叶鑫, . 别孕烯醇酮对帕金森病模型小鼠黑质多巴胺能神经元的影响及可能的分子机制[J. 解剖学报, 2020, 51(4):473-482. 

5Marogianni C, Sokratous M, Dardiotis E, et al. Neurodegeneration and inflammation-an interesting interplay in Parkinsons diseaseJ. Int J Mol Sci, 2020,21(22):8427.

6Bose A, Beal MF. Mitochondrial dysfunction in Parkinsons diseaseJ. J Neurochem, 2016,139(1):216-231. 

7Zhang L, Zhang L, Li Y, et al. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of Parkinsons  diseaseJ. J Parkinsons Dis, 2020,10(2):523-542. 

8Lin TK, Lin KJ, Lin HY, et al. Glucagon-like peptide-1 receptor agonist ameliorates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity through enhancing mitophagy flux and reducing α-synuclein and oxidative stressJ. Front Mol Neurosci, 2021,14:697440. 

9Jalewa J, Sharma MK, Hlscher C. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cellsJ. J Neurochem, 2016,139(1):55-67. 

10Williams GP, Schonhoff AM, Jurkuvenaite A, et al. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinsons diseaseJ. Brain, 2021,144(7):2047-2059. 

11Hickman S, Izzy S, Sen P, et al. Microglia in neurodegenerationJ. Nat Neurosci, 2018,21(10):1359-1369. 

12Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: role and functions in brain pathologiesJ. Front Pharmacol, 2019,10:1114. 

13Diao X, Wang F, Becerra-Calixto A, et al. Induced pluripotent stem cell-derived dopaminergic neurons from familial Parkinsons disease patients display α-synuclein pathology and abnormal mitochondrial morphologyJ. Cells, 2021,10(9):2402. 

14Cao B, Zhang Y, Chen J, et al. Neuroprotective effects of liraglutide against inflammation through the AMPK/NF-κB pathway in a mouse model of Parkinsons diseaseJ. Metab Brain Dis, 2022,37(2):451-462. 

15Monzio Compagnoni G, Di Fonzo A, Corti S, et al. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimers disease and Parkinsons diseaseJ. Mol Neurobiol, 2020,57(7):2959-2980. 

16Richter V, Singh AP, Kvansakul M, et al. Splitting up the powerhouse: structural insights into the mechanism of mitochondrial fissionJ. Cell Mol Life Sci, 2015,72(19):3695-3707. 

17Feng ST, Wang ZZ, Yuan YH, et al. Dynaminrelated protein 1: a protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinsons diseaseJ. Pharmacol Res, 2020,151:104553. 

18Lee JY, Nagano Y, Taylor JP, et al. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagyJ. J Cell Biol, 2010,189(4):671-679. 

19Pham AH, Meng S, Chu QN, et al. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuitJ. Hum Mol Genet, 2012,21(22):4817-4826. 

20Zhao F, Wang W, Wang C, et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: implications for idiopathic Parkinsons diseaseJ. Biochim Biophys Acta Mol Basis Dis, 2017,1863(6):1359-1370. 

21Hu Z, Mao C, Wang H, et al. CHIP protects against MPP(+)/MPTP-induced damage by regulating Drp1 in two models of Parkinsons diseaseJ. Aging (Albany NY), 2021,13(1):1458-1472. 

22Wu P, Dong Y, Chen J, et al. Liraglutide regulates mitochondrial quality control system through PGC-1α in a mouse model of Parkinsons diseaseJ. Neurotox Res, 2022,40(1):286-297. 

23Jassim AH, Inman DM, Mitchell CH. Crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegenerationJ. Front Pharmacol, 2021,12:699623. 

24Voloboueva LA, Emery JF, Sun X, et al. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalinJ. FEBS Lett, 2013,587(6):756-762. 

25Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasomeJ. Nat Immunol, 2013,14(5):454-460. 

26Ongnok B, Maneechote C, Chunchai T, et al. Modulation of mitochondrial dynamics rescues cognitive function in rats with doxorubicin-induced chemobrain via mitigation of mitochondrial dysfunction and neuroinflammationJ. FEBS J, 2022,289(20):6435-6455. 

27Stavropoulos F, Sargiannidou I, Potamiti L, et al. Aberrant mitochondrial dynamics and exacerbated response to neuroinflammation in a novel mouse model of CMT2AJ. Int J Mol Sci, 2021,22(21):11569. 

基金

河北师范大学科技类基金项目;河北师范大学大学生创新创业训练计划项目;河北师范大学大学生课外学术科技创新创业项目

 利拉鲁肽对百草枯诱导的小鼠帕金森病模型炎症及线粒体融合/分裂的影响

" title="Share on Weibo" target="_blank">
PDF(1766 KB)

Accesses

Citation

Detail

段落导航
相关文章

/