Roscovitine挽救帕金森病小鼠相关脑区神经元丢失和神经炎症

刘叶 楚亚楠 徐岑璐 何佳澄 苏炳银 太颢然

解剖学报 ›› 2023, Vol. 54 ›› Issue (6) : 635-643.

PDF(10218 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(10218 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (6) : 635-643. DOI: 10.16098/j.issn.0529-1356.2023.06.003
神经生物学

Roscovitine挽救帕金森病小鼠相关脑区神经元丢失和神经炎症

  • 刘叶1 楚亚楠1,2 徐岑璐1 何佳澄1 苏炳银1,2* 太颢然1,2*
作者信息 +

 Roscovitine rescuing neuronal loss and neuroinflammation in brain regions associated with Parkinson’s disease mice

  •  LIU  Ye1  CHU  Ya-nan1,2 XU  Ce-lu1  HE  Jia-cheng1  SU  Bing-yin1,2 * TAI  Hao-ran1,2*
Author information +
文章历史 +

摘要

目的 探讨细胞周期依赖性激酶(Cdk)5抑制剂Roscovitine对1-甲基4-苯基-1,2,3,6-四氢吡啶 (MPTP) 诱导的帕金森病 (PD) 模型小鼠相关脑区病理变化的影响及可能机制。    方法 经MPP+处理的细胞,采用Western blotting检测 Roscovitine对P25、Cdk5蛋白的相对表达水平的影响;ELISA法检测Roscovitine对多巴胺的释放的影响。将15只雄性 C57BL/6 N小鼠随机分为3组,分别为PBS组、MPTP组、MPTP + Roscovitine组,每组 5只。 MPTP组与MPTP + Roscovitine组从第3天起连续7 d腹腔注射25 mg/(kg ·d) MPTP制备PD模型小鼠,MPTP + Roscovitine组连续10 d腹腔注射10 mg/(kg ·d) Roscovitine,PBS组给予等容量的PBS。末次给药24 h后,采用步态分析、旷场实验、转棒实验等检测Roscovitine对PD模型小鼠行为学的影响;采用免疫组织化学法检测Roscovitine对PD模型小鼠黑质、纹状体酪氨酸氢化酶(TH)及PD相关脑区的神经元、神经胶质细胞、神经炎症等相关指标表达的影响。    结果  Western blotting和ELISA结果显示,经MPP+处理的细胞P25、Cdk5蛋白表达水平升高,多巴胺释放量相对降低(P<0.01),Roscovitine可降低P25、Cdk5蛋白表达水平(P<0.05)、增加多巴胺释放量(P<0.05); 与PBS组相比,MPTP组PD模型小鼠存在运动功能障碍,且黑质、纹状体内TH+细胞数下降(P<0.01),PD相关脑区内胶质纤维酸性蛋白(GFAP)、Iba1、核因子κB (NF-κB)抑制物激酶α(IKKα)、p-IKK阳性细胞数升高(P<0.05);而Roscovitine干预显著改善了运动能力(P<0.01),增加TH(P<0.01)、降低GFAP、Iba1、IKKα、p-IKK(P<0.05)的表达。    结论 Roscovitine可减少MPTP 模型小鼠 PD 相关脑区的多巴胺能神经元丢失和胶质细胞激活,抑制 NF-κB 信号通路激活,从而发挥神经保护作用。

Abstract

 Objective  To investigate the effect and possible mechanism of cell cycle-dependent kinase  (Cdk)5 inhibitor Roscovitine on 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced pathological changes in brain regions associated with Parkinson’s disease (PD) model mice.     Methods  The effect of Roscovitine on the relative expression levels of P25 and Cdk5 proteins was detected by Western blotting in MPP+-treated cells. The ELISA method detected the effect of Roscovitine on the release of dopamine. Fifteen male C57BL/6N mice were randomly divided into 3 groups, PBS group, MPTP group, and MPTP + Roscovitine group, 5 mice in each group. PD model mice were prepared by intraperitoneal injection of 25 mg/(kg ·d) MPTP for 7 consecutive days from the 3rd day in the MPTP + Roscovitine group, and 10 mg/(kg ·d) Roscovitine was injected intraperitoneally for 10 days in the MPTP + Roscovitine group, and the PBS group was given the same volume of PBS. Twenty-four hours after the last dose, the effect of Roscovitine on the behavior of PD model mice was detected by gait analysis, open field experiment, and rod rotation experiment. The effect of Roscovitineon the expression of neurons, glial cells, neuroinflammation and other related indexes in PD model mice such as nigrostriatal tyrosine hydrogenase (TH) and PD-related brain regions was detected by immunohistochemistry.     Results  Western blotting and ELISA showed that the expression levels of P25 and Cdk5 proteins and the release of dopamine decreased relatively low in MPP+ treated cells (P<0.01), Roscovitine could reduce the expression level of P25 and Cdk5 protein (P<0.05), increased the release of dopamine (P< 0.05); Compared with the PBS group, the PD model mice in the MPTP group had motor dysfunction and decreased the number of TH+ cells in the substantia nigra and striatum (P< 0.01). The number of positive cells in PD-related brain regions increased in glial fibrillary acidic protein (GFAP), Iba1, inhibitor of nuclear factor kappa B (NF-κB) kinase subunit α(IKKα), and p-IKK (P<0.05), and Roscovitine intervention significantly improved exercise capacity (P<0.01), increased TH(P<0.01), reduced GFAP, Iba1, IKKα, p-IKK (P< 0.05).    Conclusion  Roscovitine can reduce the loss of dopaminergic neurons and glial cell activation in PD-related brain regions of MPTP model mice, and inhibit the activation of NF-κB signaling pathway, thereby exerting neuroprotective effects. 

关键词

帕金森病 / 1-甲基-4-苯基-1,2,3,6-四氢吡啶 / 周期素依赖性激酶5 / Roscovitine / 免疫组织化学 / 小鼠

Key words

Parkinson’s disease
/ 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine / cyclin-dependent kinase 5 / Roscovitine / Immunohisochemistry / Mouse

引用本文

导出引用
刘叶 楚亚楠 徐岑璐 何佳澄 苏炳银 太颢然. Roscovitine挽救帕金森病小鼠相关脑区神经元丢失和神经炎症[J]. 解剖学报. 2023, 54(6): 635-643 https://doi.org/10.16098/j.issn.0529-1356.2023.06.003
LIU Ye CHU Ya-nan XU Ce-lu HE Jia-cheng SU Bing-yin TAI Hao-ran.  Roscovitine rescuing neuronal loss and neuroinflammation in brain regions associated with Parkinson’s disease mice[J]. Acta Anatomica Sinica. 2023, 54(6): 635-643 https://doi.org/10.16098/j.issn.0529-1356.2023.06.003
中图分类号: R361.2    

参考文献

[1]Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease[J]. N Engl J Med, 2004,351(24):2498-2508. 

[2]Zhang Y, Roy DS, Zhu Y, et al. Targeting thalamic circuits rescues motor and mood deficits in PD mice[J]. Nature,2022,607(7918):321-329. 

[3]Episcopo FL, Tirolo C, Testa N, et al. Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration[J]. Curr Aging Sc, 2013,6(1):45-55. 
[4]Li XSh, Tai HR, Su BY, et al. Study of mitochondrial serine protease inhibition of MPTP to induce Parkinson’s disease in mice[J]. Journal of Chengdu Medical College, 2021, 16(5):543-548.(in Chinese)
李小双, 太颢然, 苏炳银, 等. 线粒体丝氨酸蛋白酶抑制MPTP诱导小鼠帕金森病的研究[J]. 成都医学院学报, 2021,16(5):543-548. 
[5]Pao PC, Tsai LH. Three decades of Cdk5[J]. J Biomed Sci,2021,28(1):79. 
[6]Pao PC, Seo J, Lee A, et al. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes[J]. Proc Natl Acad Sci USA, 2023,120(16):e2217864120. 
[7]Liu SL, Wang C, Jiang T, et al. The Role of Cdk5 in Alzheimer’s Disease[J]. Mol Neurobiol,2016;53(7):4328-4342. 
[8]Smith PD, Crocker SJ, Jackson-Lewis V, et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease[J]. Proc Natl Acad Sci USA, 2003,100(23):13650-13655. 
[9]He R, Huang W, Huang Y, et al. Cdk5 inhibitory peptide prevents loss of dopaminergic neurons and alleviates behavioral changes in an MPTP induced Parkinson’s disease mouse model[J]. Front Aging Neurosci, 2018,10:162. 

[10]Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease [J]. J Neuroinflamm, 2022,19(1):135. 

[11]Jia Y, Deng H, Qin Q, et al. JWH133 inhibits MPP(+)-induced inflammatory response and iron influx in astrocytes[J]. Neurosci Lett,2020,720:134779.  

   [12]Liu KT, Chen BB, Shui YL, et al. Neuroprotective effect of exogenous H2S on Parkinson’s disease model mice and its effect on matrix metalloproteinase 9 and Caspase-1 expression [J]. Acta Anatomica Sinica, 2023, 54(3):289-295. (in Chinese)
刘柯婷, 陈缤彬, 税玉莲, 等. 外源性H2S对帕金森病模型小鼠神经保护作用及其对基质金属蛋白酶9和Caspase-1表达的影响[J]. 解剖学报, 2023,54(3):289-295. 
[13]Martí Y, Matthaeus F, Lau T, et al. Methyl-4-phenylpyridinium (MPP+) differentially affects monoamine release and re-uptake in murine embryonic stem cell-derived dopaminergic and serotonergic neurons [J]. Mol Cell Neurosci, 2017,83:37-45. 
[14]Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration[J]. Cell Death Diffe,2019,26(2):213-228. 
[15]Huang H, Gao Y, Nie K, et al. [Macrophage migration inhibitory factor meditates MPP+/MPTP-induced NLRP3 inflammasome activation in microglia cells][J]. Nan Fang Yi Ke Da Xue Xue Bao, 2021,41(7):972-979. 
[16]Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications [J]. Mol Psychiatry, 2022,27(1):445-465. 
[17]Castro DC, Bruchas MR. A motivational and neuropeptidergic hub: anatomical and functional diversity within the nucleus accumbens shell [J]. Neuron, 2019,102(3):529-552. 
[18]Bieri G, Brahic M, Bousset L, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons[J]. Acta Neuropathol,2019,137(6):961-980. 
[19]Amin ND, Albers W, Pant HC. Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35[J]. J Neurosci Res, 2002,67(3):354-362. 
[20]Shukla V, Zheng YL, Mishra SK, et al. A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer’s disease phenotypes in model mice[J]. Faseb J, 2013,27(1):174-186. 
[21]Zhang Q, Xie H, Ji Z, et al. Cdk5/p25 specific inhibitory peptide TFP5 rescues the loss of dopaminergic neurons in a sub-acute MPTP induced PD mouse model[J]. Neurosci Lett, 2016,632:1-7. 
[22]Huang B, Liu J, Meng T, et al. Polydatin Prevents Lipopolysaccharide (LPS)-Induced Parkinson’s Disease via Regulation of the AKT/GSK3β-Nrf2/NF-κB Signaling Axis[J]. Front Immunol, 2018,9:2527.

基金

p53-HtrA2反馈环路调控帕金森病中多巴胺能神经元细胞命运;HtrA2/Omi抗细胞衰老及清除衰老细胞的机制研究

PDF(10218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/