
沉默beclin1基因对缺氧缺糖/复氧复糖HT22细胞凋亡的影响
张怡 靳晓飞 周晓红 董贤慧 张颖 于文涛 成媛 高维娟
解剖学报 ›› 2020, Vol. 51 ›› Issue (1) : 3-8.
沉默beclin1基因对缺氧缺糖/复氧复糖HT22细胞凋亡的影响
Effect of silencing beclin1 gene on apoptosis of HT22 cells after oxygen and glucose deprivation/reoxygenation
目的 探讨beclin1基因对缺氧缺糖/复氧复糖小鼠海马神经元细胞系HT22细胞凋亡的影响。方法 取对数生长期的HT22细胞,随机分为4组:正常组(normal)、缺氧缺糖/复氧复糖(OGD/R)模型组(model)、beclin1基因沉默组(beclin1-/-)、转染对照组(control)。除normal组外,其余各组细胞均在缺氧缺糖6 h后进行复氧复糖。利用RNAi技术,针对小鼠cDNA序列设计beclin1干扰序列,用脂质体Lipo2000包裹后转染至HT22细胞。于转染48 h后用荧光显微镜观察转染效率,Western blotting检测细胞beclin1 表达情况。各组细胞均于复氧复糖24 h后采用CCK-8法检测细胞活力,乳酸脱氢酶(LDH)法检测细胞损伤情况,免疫荧光染色检测Bax、Bcl-2表达及比值变化,Western blotting检测LC3、P62及Caspase-3表达。SPSS 19.0 统计学软件进行数据分析。结果 与normal组相比,model组细胞活力及P62蛋白表达显著降低(P<0.01),乳酸脱氢酶(LDH)漏出率、LC3Ⅱ/LC3Ⅰ、Caspase-3表达及Bax/Bcl-2均显著升高(P<0.01)。与model组相比,beclin1-/-组细胞活力及LC3Ⅱ/LC3Ⅰ 表达显著降低(P<0.01),LDH漏出率、Bax/Bcl-2及P62、Caspase-3表达显著升高(P<0.01);control组与model组比较差异无显著性。结论 沉默beclin1抑制细胞自噬可使缺氧缺糖/复氧复糖处理的HT22细胞损伤加重,细胞凋亡进一步增加。
Beclin1 / 基因沉 / 氧缺糖/复氧复糖 / 自噬 / 免疫印迹法
Beclin1 /
Gene silencing /
Oxygen and glucose deprivation/reoxygenation /
Autophagy /
Western blotting
[1] Wang M, Li Y, Ding Y, et al. Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury [J]. Mol Neurobiol, 2015, 53(2):932-943.
[2] Hu Z, Yang B, Mo X, et al. Mechanism and regulation of autophagy and its role in neuronal diseases[J]. Mol Neurobiol, 2015, 52(3):1190-1209.
[3] Kalinichenko SG, Niu M. Morphological characteristic of apoptosis and its significance in neurogenesis [J]. Morfologiia, 2007, 131(2):16-28.
[4] Carloni S, Girelli S, Scopa C, et al. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia[J]. Autophagy, 2010, 6(3):366-377.
[5] Wang N, Zhang Q, Luo L, et al. β-asarone inhibited cell growth and promoted autophagy via P53/Bcl-2/Bclin-1 and P53/AMPK/mTOR pathways in human glioma U251 cells[J]. J Cell Physiol, 2018,233(3):2434-2443.
[6] Liu L, Zhao WM, Yang XH, et al. Effect of inhibiting Beclin-1 expression on autophagy, proliferation and apoptosis in colorectal cancer[J]. Oncol Lett, 2017, 14(4):4319-4324.
[7] Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury[J]. Neurobiol Dis, 2008, 32(3):329-339.
[8] Wang J, Xiong J, Zhou WSh. Morphological alterations of Golgi apparatus after oxygen-glucose deprivation followed by reperfusion and intervening by over-expressed Grasp65 in HT22 cells and their underlying mechanism[J]. Journal of Apoplexy and Nervous Diseases, 2016,33(12):1067-1071.(in Chinese)
王佳, 熊炬, 周文胜. HT22细胞氧糖剥夺再灌注及 Grasp65过表达干预后高尔基体的形态变化及其可能机制研究[J]. 中风与神经疾病杂志, 2016, 33(12):1067-1071.
[9] Khandelwal P, Yavagal DR, Sacco RL. Acute ischemic stroke intervention [J]. J Am Coll Cardiol, 2016, 67(22):2631-2644.
[10]Kotl?ga D, Go??bjanowska M, Masztalewicz M, et al. The emotional stress and risk of ischemic stroke [J]. Neurol Neurochir Pol, 2016, 50(4):265-270.
[11]Wong W. Focus issue: autophagy as hero and villain [J]. Sci Signal, 2017, 10(468).
[12]Shpilka T, Elazar Z. Shedding light on mammalian microautophagy[J]. Dev Cell,2011, 20(1):1-2.
[13]Wang HJ, Tan YZh. Mechanism of autophagy opens a new way for treatment of diseases[J]. Acta Anatomica Sinica, 2017, 48(1):103-105.(in Chinese)
王海杰, 谭玉珍. 细胞自噬机制开启疾病治疗新途径[J]. 解剖学报, 2017,48(1):103-105.
[14]He C, Levine B. The beclin1 interactome[J]. Curr Opin Cell Biol, 2010, 22(2):140-149.
[15]Wang MCh, Wu AG, Wang RW, et al. Influence on cell survival by transfecting beclin1 to induce autophagy in triple-negative breast cancer BT-549 cells[J]. Chinese Journal of Breast Disease(Electronic Edition),2013,7(1):12-19.(in Chinese)
王梦川, 吴爱国, 王日玮, 等. 转染beclin1基因诱导自噬对三阴性乳腺癌BT-549细胞生长的影响[J]. 中华乳腺病杂志(电子版), 2013, 7(1):12-19.
[16]Song H, Yan C, Tian X, et al. CREG protects from myocardial ischemia/reperfusion injury by regulating myocardial autophagy and apoptosis[J]. Biochim Biophys Acta Mol Basis Dis,2016, 1863(8):1893-1903.
[17]Kim JH, Hong SK, Wu PK, et al. Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels[J]. Exp Cell Res, 2014, 327(2):340-352.
[18]Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level[J]. Nat Rev Mol Cell Biol, 2008, 9(3):231-241.
[19]Eisenberglerner A, Bialik S, Simon HU, et al. Life and death partners: apoptosis, autophagy and the crosstalk between them[J]. Cell Death Differ, 2009, 16(7):966-975.
[20]Ji HJ, Hu JF, Wang YH, et al. Osthole improves chronic cerebral hypoperfusion induced cognitive deficits and neuronal damage in hippocampus[J]. Eur J Pharmacol, 2010, 636(1):96-101.
[21]Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival[J]. Biomol Concepts, 2016, 7(4):259-270.
[22]Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the Bcl-2 protein family: implications for physiology and therapy[J]. Nat Rev Mol Cell Biol, 2014, 15(1):49-63.
[23]Szychowski KA, Wnuk A, Rzemieniec J, et al. Triclosan-evoked neurotoxicity involves NMDAR subunits with the specific role of GluN2A in Caspase-3-dependent apoptosis [J]. Mol Neurobiol, 2019,56(1):1-12.
/
〈 |
|
〉 |