Expression of anoctamin 1 in the process of myocardial fibrosis 

TIAN Xiang-qin TAN Zhao-yang LI Xin-zhi MA Ke-tao LI Li SI Jun-qiang﹡

Acta Anatomica Sinica ›› 2019, Vol. 50 ›› Issue (2) : 173-178.

PDF(8400 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(8400 KB)
Acta Anatomica Sinica ›› 2019, Vol. 50 ›› Issue (2) : 173-178. DOI: 10.16098/j.issn.0529.1356.2019.02.006
Cell and Molecules Biology

Expression of anoctamin 1 in the process of myocardial fibrosis 

  • TIAN Xiang-qin 1,2 TAN Zhao-yang1 LI Xin-zhi1 MA Ke-tao1 LI Li1 SI Jun-qiang 1*
Author information +
History +

Abstract

Objective To clarify the expression feature of anoctamin 1(ANO1) in the process of cardiac fibrosis and seek new targets for preventing it. Methods The myocardial infarction (MI) rats were prepared by coronary artery ligation. The left ventricular from MI group and the sham operation group were taken at one week (1 week) after MI. The changes of ANO1 expression in the two groups were detected by immunohistochemical staining and immunofluorescence double labeling. The expression of ANO1 in cardiac fibroblasts (CFs) was detected by immunofluorescence labeling, Real-time PCR and Western blotting. Results ANO1 exhibited high expression in MI and co-expressed with α-smooth muscle actin(α-SMA), and it was clearly expressed in the nucleus membrane and cytoplasm of CFs. The expression intensity of ANO1 was coincident with α-SMA. Furthermore, ANO1 expression increased significantly in the CFs after 48 hours culture comparing with the new isolated CFs. Conclusion The expression of ANO1 enhances markedly during the transformation of CFs into myocardial fibroblasts, suggesting that ANO1 may play an important role in the process of cardiac fibrosis.

Key words

Anoctamin1 / Calcium-activated chloride channels / Cardiac fibroblasts / Myocardial fibrosis / Immunohistochemistry / Rat

Cite this article

Download Citations
TIAN Xiang-qin TAN Zhao-yang LI Xin-zhi MA Ke-tao LI Li SI Jun-qiang﹡. Expression of anoctamin 1 in the process of myocardial fibrosis [J]. Acta Anatomica Sinica. 2019, 50(2): 173-178 https://doi.org/10.16098/j.issn.0529.1356.2019.02.006

References

[1] Doppler SA, Carvalho C, Lahm H, et al. Cardiac fibroblasts: more than mechanical support [J]. J Thoracic Dis, 2017, 9 (S1): S36-S51.
 [2] Deb A, Ubil E. Cardiac fibroblast in development and wound healing [J]. Mol Cell Cardiol, 2014, 70: 47-55.
 [3] Caputo A, Caci E, Ferrera L, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity [J]. Science, 2008, 322 (5901): 590-594.
 [4] Schroeder BC, Cheng T, Jan YN, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit [J]. Cell, 2008, 134 (6): 1019-1029.
 [5] Yang YD, Cho H, Koo JY, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance [J]. Nature, 2008, 455 (7217): 1210-1215.
 [6] Pedemonte N, Galietta LJ. Structure and function of TMEM16 proteins (anoctamins) [J]. Physiol Rev, 2014, 94 (2): 419-459.
 [7] Oh U, Jung J. Cellular functions of TMEM16/anoctamin [J]. Pflugers Arch, 2016, 468 (3): 443-453.
 [8] Vasquez C, Benamer N, Morley GE. The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts [J]. J Cardiovasc Pharmacol, 2011, 57 (4): 380-388.
 [9] Chistiakov DA, Orekhov AN, Bobryshev YV. The role of cardiac fibroblasts in post-myocardial heart tissue repair [J]. Exp Mol Pathol, 2016, 101 (2): 231-240.
 [10]Li CX, Chang YQ, Guo ZhK. Division types of cultured cardiac fibroblasts in neonatal rat[J]. Acta Anatomica Sinica, 2016,47(1): 55-61.(in Chinese)
李辞霞, 常玉巧, 郭志坤. 新生大鼠心脏成纤维细胞体外分裂方式 [J]. 解剖学报, 2016, 47(1): 55-61. 
 [11]Yokota S, Chosa N, Kyakumoto S, et al. ROCK/actin/MRTF signaling promotes the fibrogenic phenotype of fibroblast-like synoviocytes derived from the temporomandibular joint [J]. Int J Mol Med, 2017, 39 (4): 799-808.
 [12]Horvath B, Vaczi K, Hegyi B, et al. Sarcolemmal Ca2+ -entry through L-type Ca2+ channels controls the profile of Ca2+ -activated Cl-current in canine ventricular myocytes [J]. J Mol Cell Cardiol, 2016, 97 (1): 125-139.
 [13]Ohsawa R, Miyazaki H, Niisato N, et al. Intracellular chloride regulates cell proliferation through the activation of stress-activated protein kinases in MKN28 human gastric cancer cells [J]. J Cell Physiol, 2010, 223 (3): 764-770.
 [14]Hiraoka K, Miyazaki H, Niisato N, et al. Chloride ion modulates cell proliferation of human androgen-independent prostatic cancer cell [J]. Cell Physiol Biochem, 2010, 25 (4-5): 379-388.
 [15]Simon S, Grabellus F, Ferrera L, et al. DOG1 regulates growth and IGFBP5 in gastrointestinal stromal tumors [J]. Cancer Res, 2013, 73 (12): 3661-3670.

 [16]Duvvuri U, Shiwarski DJ, Xiao D, et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression [J]. Cancer Res, 2012, 72 (13): 3270-3281.[

  17]Wang M, Yang H, Zheng LY, et al. Downregulation of TMEM16A calciumactivated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation [J]. Circulation, 2012, 125 (5): 697-707.

 [18]Klausen TK, Bergdahl A, Hougaard C, et al. Cell cycle-dependent activity of the volume-and Ca2+ -activated anion currents in Ehrlich lettre ascites cells [J]. J Cell Physiol, 2007, 210 (3): 831-842.
 [19]Hahn A, Faulhaber J, Srisawang L, et al. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium [J]. Physiol Rep, 2017, 5 (12): e13290. 
PDF(8400 KB)

Accesses

Citation

Detail

Sections
Recommended

/