Relative dimensions of the first metatarsals within 12 extant primates

LU Tao JING Peng ZHANG Meng-nan HUO Xiu-li DU Bao-pu GAO Yan

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (6) : 730-737.

PDF(2268 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(2268 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (6) : 730-737. DOI: 10.16098/j.issn.0529-1356.2025.06.013
Anthropology

Relative dimensions of the first metatarsals within 12 extant primates

  • LU Tao1  JING  Peng2  ZHANG  Meng-nan1  HUO Xiu-li2  DU Bao-pu1*  GAO Yan1,2 
Author information +
History +

Abstract

Objective To investigate the size variation in the first metatarsal of extant primates.    Methods In this study, we analyzed 135 first metatarsal specimens across 12 primate genera, quantifying eight linear measurements, articular surface areas, mid-shaft cross-sectional area, total surface area, volume, and derived indices. Multivariate patterns were assessed through mean-based correspondence analysis and principal component analysis (PCA).    Results Eulemur, Otolemur, Cebus, and Perodicticus exhibited a relatively high metatarsal surface-area-to-volume ratio. Perodicticus additionally showed a low articular facet index. Propithecus, Colobus, and Macaca displayed lower values for metatarsal shaft robusticity, the ratio of shaft cross-sectional area to base articular surface area, and the proximal articular facet index. Nasalis possessed a relatively high articular facet index. Pongo, Pan, Gorilla, and Homo sapiens were characterized by higher metatarsal shaft robusticity and a lower metatarsal surface-area-to-volume ratio. Principal component analysis revealed that the 12 extant primate genera could be broadly divided into two groups. Group 1 comprised Pongo, Pan, Gorilla and H. sapiens, although H. sapiens formed a distinct cluster relative to the extant great apes. Group 2 included Eulemur, Otolemur, Perodicticus, Propithecus, Cebus, Colobus, Macaca and Nasalis .   Conclusion The relative sizedistribution of the first metatarsal provides some reference value for classifying extant primates. However, it demonstrates no clear correlations with specific locomotor patterns or foot grasping ability. 

Key words

First metatarsal / Relative robusticity / Locomotor patterns / Classification / Surface area / Measurement / Principal component analysi / / Extant primate

Cite this article

Download Citations
LU Tao JING Peng ZHANG Meng-nan HUO Xiu-li DU Bao-pu GAO Yan. Relative dimensions of the first metatarsals within 12 extant primates[J]. Acta Anatomica Sinica. 2025, 56(6): 730-737 https://doi.org/10.16098/j.issn.0529-1356.2025.06.013

References

 [1] Ding ShH. Human Osteological Research[M]. Beijing: Science Press, 2021: 37-40.(in Chinese) 
丁士海. 人体骨学研究[M]. 北京:科学出版社,2021:37-40.
 [2] Wunderlich RE. The primate forefoot[A]. In: Zeininger A, Hatala KG, Wunderlich RE, et al (eds). The Evolution of the Primate Foot: Anatomy, Function, and Palaeontological Evidence[M]. Switzerland: Springer Nature Switzerland AG, 2022: 73-109.
 [3] Fernández PJ, Alm cija S, Patel BA, et al. Functional aspects of metatarsal head shape in humans, apes, and Old World monkeys[J]. J Hum Evol, 2015, 86: 136-146.
 [4] Tomizawa Y, Nakatsukasa M, Ponce de Len MS, et al. Shaft structure of the first metatarsal contains a strong phylogenetic signal in apes and humans[J]. Am J Biol Anthropol, 2024, 185(1): e24987.
 [5] Jacobs RL, Boyer DM, Patel BA. Comparative functional morphology of the primate peroneal process[J]. J Hum Evol, 2009, 57(6): 721-731.
 [6] Komza K, Skinner MM. First metatarsal trabecular bone structure in extant hominoids and Swartkrans hominins[J]. J Hum Evol, 2019, 131: 1-21.
 [7] Patel BA, Seiffert ER, Boyer DM, et al. New primate first metatarsals from the Paleogene of Egypt and the origin of the anthropoid big toe[J]. J Hum Evol, 2012, 63(1): 99-120.
 [8] Goodenberger KE, Boyer DM, Orr CM, et al. Functional morphology of the hallucal metatarsal with implications for inferring grasping ability in extinct primates[J]. Am J Phys Anthropol, 2015, 156(3): 327-348.
 [9] Patel BA, Yapuncich GS, Tran C, et al. Catarrhine hallucal metatarsals from the early Miocene site of Songhor, Kenya[J]. J Hum Evol, 2017, 108: 176-198.
 [10] Zhao XJ, Wang XL, Dang XY, et al. Sex differences in the length ratios of metapodials in Macaca mulatta from the Taihang mountains[J]. Acta Anatomica Sinica, 2009, 40(6): 1001-1004.(in Chinese) 
赵晓进,王训练,党晓云,等. 太行山猕猴掌骨和跖骨长度比率的性别差异[J]. 解剖学报,2009,40(6):1001-1004.
 [11] Mao XJ, Wang FCh, Hu FX, et al. Sex dimorphism of metatarsal of Macaca Mulatta[J]. Journal of Xinyang Normal University (Natural Science Edition), 2014, 27(4): 520-524.(in Chinese) 
毛晓静,王凤产,胡凤霞,等. 太行山猕猴跖骨性差[J]. 信阳师范学院学报(自然科学版),2014,27(4):520-524.
 [12] Du BP. Sex and side related differences of diaphyseal cross sectional morphology in the first metatarsals of gorilla[J]. Capital Food Medicine, 2024, (15): 11-14.(in Chinese) 
杜抱朴. 大猩猩第1跖骨骨干截面形态的性别和侧别差异[J]. 首都食品与医药,2024,(15):11-14.
 [13] Liu Y, Antonijevic'D, Li R, et al. Study of sexual dimorphism in metatarsal bones: geometric and inertial analysis of the threedimensional reconstructed models[J]. Front Endocrinol (Lausanne), 2021, 12: 734362.
 [14] Zhai D, Fu XB, Tian Y, et al. Bilateral asymmetry in the metacarpals and metatarsals of the macaque[J]. Journal of Henan Normal University (Nature Science Edition), 2011, 39(6): 119-122.(in Chinese) 
翟頔,付香斌,田原,等. 太行山猕猴掌骨和跖骨的不对称性[J]. 河南师范大学学报(自然科学版),2011,39(6):119-122.
 [15] Gibelli D, Poppa P, Cummaudo M, et al. Sex assessment from the volume of the first metatarsal bone: a comparison of linear and volume measurements[J]. J Forensic Sci, 2017, 62(6): 1582-1585.
 [16] Zipfel B, Kidd R. Hominin first metatarsals (SKX 5017 and SK 1813) from Swartkrans: a morphometric analysis[J]. Homo, 2006, 57(2): 117-131.
 [17] DeSilva J, McNutt E, Benoit J, et al. One small step: a review of Plio-Pleistocene hominin foot evolution[J]. Am J Phys Anthropol, 2019, 168(S67): 63-140.
 [18] Marchi D. The cross-sectional geometry of the hand and foot bones of the Hominoidea and its relationship to locomotor behavior[J]. J Hum Evol, 2005, 49(6): 743-761.
 [19] Platt ML, Ghazanfar AA. Primate Neuroethology[M]. New York: Oxford University Press, 2010: 31-63.
 [20] Fleagle JG. Primate Adaptation and Evolution[M]. San Diego: Academic Press, 2013: 1-2.

Funding

北京市教育委员会科技项目(KM202210025029);教育部人文社会科学研究项目(22YJCZH027)
PDF(2268 KB)

Accesses

Citation

Detail

Sections
Recommended

/