[1] Barrère-Lemaire S, Vincent A, Jorgensen C, et al. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing [J]. Physiol Rev, 2024, 104(2):659-725.
[2] Wang QM, Liu Y, Lü Y, et al. Promoting effect of bFGF and IGF-1 on the differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells and its related mechanism [J]. Chinese Pharmacological Bulletin, 2023, 39(4):715-722. (in Chinese)
王巧敏, 刘洋, 吕洋, 等. bFGF和IGF-1对骨髓间充质干细胞向心肌样细胞分化促进作用及相关机制探讨[J]. 中国药理学通报, 2023, 39(4): 715-722.
[3] Meng JF. Protective effect of Rehmannia rehmannia polysaccharide on H2O2-induced injury in neonatal rat cardiomyocytes and its mechanism [J].
Pharmacology and Clinics of Chinese Nateria Medica, 2016, 32(1):90-95. (in Chinese)
孟剑锋. 地黄多糖对H2O2诱导乳鼠心肌细胞损伤的保护作用及其机制研究 [J]. 中药药理与临床, 2016, 32(1): 90-95.
[4] Chen H, Liu X, Xie M, et al. Two polysaccharides from Rehmannia glutinosa: isolation, structural characterization, and hypoglycemic activities [J]. RSC Advances, 2023, 13(43):30190-30201.
[5] Zhidu S, Ying T, Rui J, et al. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities [J]. Stem Cell Res Ther, 2024, 15(1):266.
[6] Povsic TJ, Gersh BJ. Stem cells in cardiovascular diseases: 30,000-foot view [J]. Cells, 2021, 10(3):600.
[7] Williams AR, Hatzistergos KE, Addicott B, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction [J]. Circulation, 2013, 127(2):213-223.
[8] Dong ZH, Wang HP, Lü Y, et al. FGF-2 and panax notoginseng saponins induce the differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells [J]. Journal of Army Medical University, 2024, 46(21):2415-2423. (in Chinese)
董子晗, 王海萍, 吕洋, 等. FGF-2和三七总皂苷诱导骨髓间充质干细胞向心肌样细胞分化 [J]. 陆军军医大学学报, 2024, 46(21): 2415-2423.
[9] Liang L, Yue Y, Zhong L, et al. Anti-aging activities of Rehmannia glutinosa Libosch. crude polysaccharide in Caenorhabditis elegans based on gut microbiota and metabonomic analysis [J]. Int J Biol Macromol, 2023, 253(pt 8):127647.
[10] Liu NA, Liu JQ, Liu Y, et al. Rehmannia glutinosa polysaccharide regulates bone marrow microenvironment via HIF-1α/NF-κB signaling pathway in aplastic anemia mice [J]. An Acad Bras Cienc, 2023, 95(3):e20220672.
[11] Dong Q, Liu X, Shen L, et al. The protective effect of herbal polysaccharides on ischemia-reperfusion injury [J]. Int J Biol Macromol, 2016, 92:431-440.
[12] Jia J, Chen J, Wang G, et al. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix [J]. Biomed Pharmacother, 2023, 168:115809.
[13] Zhang YQ. Effect of rehmanniae polysaccharide on the differentiation of adipose-derived mesenchymal stem cells into cardiomyocytes in rats [D].
Beijing: Chinese People’s liberation army, Medical Training College, 2008. (in Chinese)
张琰琴. 地黄多糖对大鼠脂肪间充质干细胞向心肌细胞诱导分化影响的研究 [D]. 北京:中国人民解放军军医进修学院,2008.
[14] Robbe ZL, Shi W, Wasson LK, et al. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart [J]. Genes Dev, 2022, 36(7-8):468-482.
[15] Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications [J]. Transl Pediatr, 2021, 10(9):2366-2386.
[16] Ma W, Gong H, Jani V, et al. Myofibril orientation as a metric for characterizing heart disease [J]. Biophys J, 2022, 121(4):565-574.
[17] Zhu Y. Gap Junction-dependent and -independent functions of connexin43 in biology [J]. Biology (Basel), 2022, 11(2):283.
[18] Ragusa R, Caselli C. Focus on cardiac troponin complex: from gene expression to cardiomyopathy [J]. Genes Dis, 2024, 11(6):101263.
[19] Feng JY, Zhu YSh, Chen Sh, et al. Physiological function and structural basis of Bcl-2 family proteins [J]. Chinese Journal of Cell Biology, 2019, 41(8):1477-1489. (in Chinese)
冯健愉, 朱玉山, 陈佺, 等. Bcl-2家族蛋白的生理功能及结构基础 [J]. 中国细胞生物学学报, 2019, 41(8): 1477-1489.
[20] Qian S, Wei Z, Yang W, et al. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy [J]. Front Oncol, 2022, 12:985363.
[21] Sovilj D, Kelemen CD, Dvorakova S, et al. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak [J]. Apoptosis, 2024, 29(34):424-438.
[22] Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane [J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(10):119317.