[1] Yang F, Li X, Long J, et al. Therapeutic efficacy and pharmacological mechanism of Yindan Xinnaotong soft capsule on acute ischemic stroke: a meta-analysis and network pharmacology analysis [J]. Metab Brain Dis, 2024, 39(4): 523-543.
[2] Marto JP, Strambo D, Livio F, et al. Drugs associated with ischemic stroke: a review for clinicians [J]. Stroke, 2021, 52(10): e646-e659.
[3] Bhaskar S, Stanwell P, Cordato D, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era [J] ? BMC Neurol, 2018, 18(1): 8.
[4] Liang S, Wu Y, Zhang R, et al. Therapeutic effects of Buyang Huanwu Tang combined with RT-PA intravenous thrombolysis on stroke of Qi deficiency and blood stasis type and its impact on Keap1-Nrf2/ARE pathway antioxidant stress [J]. Cell Mol Biol (Noisy-le-grand), 2023, 69(13): 210-216.
[5] Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: a comprehensive review [J]. Pharmacol Ther, 2018, 190: 105-127.
[6] Mo J, Yang R, Li F, et al. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation [J]. Phytomedicine, 2018, 42: 66-74.
[7] Deng M, Sun J, Peng L, et al. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury [J]. Phytomedicine, 2022, 103: 154214.
[8] Fan H, Lin P, Kang Q, et al. Metabolism and pharmacological mechanisms of active ingredients in erigeron breviscapus [J]. Curr Drug Metab, 2021, 22(1): 24-39.
[9] Niu B, Xie X, Xiong X, et al. Network pharmacology-based analysis of the anti-hyperglycemic active ingredients of roselle and experimental validation [J]. Comput Biol Med, 2022, 141: 104636.
[10] Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery [J]. Int J Mol Sci, 2019, 20(18):4331.
[11] Bai G, Pan Y, Zhang Y, et al. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives [J]. Food Chem, 2023, 429: 136836.
[12] Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces [J]. Nucleic Acids Res, 2021, 49(D1): D1388-D1395.
[13] Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules [J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
[14] Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database [J]. Nucleic Acids Res, 2017, 45(W1): W356-W360.
[15] UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023 [J]. Nucleic Acids Res, 2023, 51(D1): D523-D531.
[16] Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest [J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
[17] Berman HM, Westbrook J, Feng Z, et al. The protein data bank [J]. Nucleic Acids Res, 2000, 28(1): 235-242.
[18] Lu L, Yang LK, Yue J, et al. Scutellarin alleviates depression-like behaviors induced by LPS in mice partially through inhibition of astrocyte-mediated neuroinflammation [J]. Neurosci Lett, 2021, 765:136284.
[19] Deng M, Sun J, Peng L, et al. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury [J]. Phytomedicine, 2022, 103:154214.
[20] Wen L, He T, Yu A, et al. Breviscapine: a review on its phytochemistry, pharmacokinetics and therapeutic effects [J]. Am J Chin Med, 2021, 49(6): 1369-1397.
[21] Duan Z, Peng Y, Xu D, et al. Scutellarin alleviates neuronal apoptosis in ischemic stroke via activation of the PI3K/Akt signaling pathway [J]. Int J Mol Sci, 2025, 26(5):2175.
[22] Zhang S, Wei D, Lv S, et al. Scutellarin modulates the microbiota-gut-brain axis and improves cognitive impairment in APP/PS1 mice [J]. J Alzheimers Dis, 2022, 89(3): 955-975.
[23] Wan C, Pei J, Wang D, et al. Identification of m6A methylation-related genes in cerebral ischaemia-reperfusion of Breviscapus therapy based on bioinformatics methods [J]. BMC Med Genomics, 2023, 16(1): 210.
[24] Li Y, Li S, Li D. Breviscapine alleviates cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in a rat model [J]. ACS Chem Neurosci, 2020, 11(24): 4489-4498.
[25] Pengyue Z, Tao G, Hongyun H, et al. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra [J]. Biomed Pharmacother, 2017, 90: 69-76.
[26] Jiao W, Mi S, Sang Y, et al. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol [J]. Food Chem, 2022, 374: 131755.
[27] Feng C, Wan H, Zhang Y, et al. Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway [J]. Front Pharmacol, 2020, 11: 298.
[28] Du Sh, Liu J, Liu T, et al. Effect of leonurine on pathological changes of cerebral tissue in ischemic stroke rats based on PI3K/Akt/NF-κB signaling pathway [J]. Chinese Journal of Arteriosclerosis, 2019, 27(10): 853-861. (in Chinese)
杜帅, 刘佳, 刘婷,等. 基于PI3K/Akt/NF-κB信号通路探讨益母草碱对缺血性脑卒中大鼠脑组织病理变化的影响 [J]. 中国动脉硬化杂志, 2019, 27(10): 853-861.
[29] Li J, Yuan J. Caspases in apoptosis and beyond [J]. Oncogene, 2008, 27(48): 6194-6206.
[30] Fan W, Dai Y, Xu H, et al. Caspase3 modulates regenerative response after stroke [J]. Stem Cells, 2014, 32(2): 473-486.
[31] Jiang H, Sun Z, Zhu X, et al. Essential genes Ptgs2, Tlr4, and Ccr2 regulate neuro-inflammation during the acute phase of cerebral ischemic in mice [J]. Sci Rep, 2023, 13(1): 13021.
[32] Miao Z, Guo M, Zhou S, et al. Smoking and drinking influence the advancing of ischemic stroke disease by targeting PTGS2 and TNFAIP3 [J]. Exp Ther Med, 2018, 16(1): 61-66.
[33] Gaur V, Kumar A. Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury [J]. Drug Chem Toxicol, 2012, 35(2): 218-224.
[34] Shim JW, Madsen JR. VEGF signaling in neurological disorders [J]. Int J Mol Sci, 2018, 19(1): 275.
[35] Chen X, Wu H, Chen H, et al. Astragaloside VI promotes neural stem cell proliferation and enhances neurological function recovery in transient cerebral ischemic injury via activating EGFR/MAPK signaling cascades [J]. Mol Neurobiol, 2019, 56(4): 3053-3067.
[36] Zhu H, Hu S, Li Y, et al. Interleukins and ischemic stroke [J]. Front Immunol, 2022, 13: 828447.
[37] Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors [J]. Lancet, 1999, 354(9173): 141-148.
[38] Luo R, Su L Y, Li G, et al. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model [J]. Autophagy, 2020, 16(1): 52-69.