Potential role of natural herbal monomer scutellarein in alleviating ischemic stroke

WU Jian-yu CHAI Xue-jie YU Yuan-yuan YANG Lin-feng

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (6) : 659-672.

PDF(4819 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(4819 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (6) : 659-672. DOI: 10.16098/j.issn.0529-1356.2025.06.005
Neurbiology

Potential role of natural herbal monomer scutellarein in alleviating ischemic stroke

  • WU Jian-yu1  CHAI Xue-jie2  YU Yuan-yuan3  YANG Lin-feng4*
Author information +
History +

Abstract

Objective To investigate the potential mechanisms by which the natural herbal monomer scutellarin alleviates ischemic stroke (IS) using network pharmacology and in vivo experimental validation.    Methods Potential targets of scutellarin were predicted using SwissTargetPrediction and PharmMapper, and standardized via UniProt. IS-related differentially expressed genes (DEGs) were obtained from the GSE22255 dataset in the GEO database, with screening criteria of | log10 FC | ≥1 and P<0.05. Venny 2.1.0 analysis was used to identify overlapping targets. Protein-protein interaction (PPI) networks were constructed using STRING and visualized in cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Molecular docking was conducted using AutoDock Vina 1.5.6 to assess the binding affinity between scutellarin and hub targets. Middle cerebral artery occlusion (MCAO) mouse model was established and divided into sham, MCAO, and MCAO + scutellarin groups. Real-time PCR was used to detect mRNA expression of hub genes and phosphatidylinositol 3-kinase(PI3K)/Akt pathway components in the ischemic cortex.   Results A total of 325 scutellarin targets and 2168 IS-related DEGs were identified, with 29 overlapping targets. GO analysis yielded 51 biological processes, 5 cellular components, and 8 molecular functions. KEGG enrichment highlighted PI3K/Akt and metabolic pathways. PPI analysis identified Caspase-3, epidermal growth factor receptor (EGFR), prostaglandin-endoperoxide synthase 2 (PTGS2), peroxisome proliferator activated receptor alpha (PPARA), and interleukin-2 (IL-2) as key hub proteins. Molecular docking showed strong binding affinities between scutellarin and these proteins. Real-time PCR result  confirmed that scutellarin modulated the expression of hub genes and activated the PI3K/Akt pathway. Conclusion In the MCAO mouse model, scutellarin exerts neuroprotective effects by modulating targets such as CASP3, EGFR, PTGS2, PPARA, and IL-2, and activating the PI3K/Akt signaling pathway, exhibiting multi-target and multi-pathway characteristics.  

Key words

Network pharmacology / Ischemic stroke / Scutellarin / Molecular docking / Real-time PCR / Mouse

Cite this article

Download Citations
WU Jian-yu CHAI Xue-jie YU Yuan-yuan YANG Lin-feng. Potential role of natural herbal monomer scutellarein in alleviating ischemic stroke[J]. Acta Anatomica Sinica. 2025, 56(6): 659-672 https://doi.org/10.16098/j.issn.0529-1356.2025.06.005

References

 [1] Yang  F, Li X, Long J, et al. Therapeutic efficacy and pharmacological mechanism of Yindan Xinnaotong soft capsule on acute ischemic stroke: a meta-analysis and network pharmacology analysis [J]. Metab Brain Dis, 2024, 39(4): 523-543.
 [2] Marto  JP, Strambo D, Livio F, et al. Drugs associated with ischemic stroke: a review for clinicians [J]. Stroke, 2021, 52(10): e646-e659.
 [3] Bhaskar  S, Stanwell P, Cordato D, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era [J] ? BMC Neurol, 2018, 18(1): 8.
 [4] Liang  S, Wu Y, Zhang R, et al. Therapeutic effects of Buyang Huanwu Tang combined with RT-PA intravenous thrombolysis on stroke of Qi deficiency and blood stasis type and its impact on Keap1-Nrf2/ARE pathway antioxidant stress [J]. Cell Mol Biol (Noisy-le-grand), 2023, 69(13): 210-216.
 [5] Wang  L, Ma Q. Clinical benefits and pharmacology of scutellarin: a comprehensive review [J]. Pharmacol Ther, 2018, 190: 105-127.
 [6] Mo  J, Yang R, Li F, et al. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation [J]. Phytomedicine, 2018, 42: 66-74.
 [7] Deng  M, Sun J, Peng L, et al. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury [J]. Phytomedicine, 2022, 103: 154214.
 [8] Fan  H, Lin P, Kang Q, et al. Metabolism and pharmacological mechanisms of active ingredients in erigeron breviscapus [J]. Curr Drug Metab, 2021, 22(1): 24-39.
 [9] Niu  B, Xie X, Xiong X, et al. Network pharmacology-based analysis of the anti-hyperglycemic active ingredients of roselle and experimental validation [J]. Comput Biol Med, 2022, 141: 104636.
 [10] Pinzi  L, Rastelli G. Molecular docking: shifting paradigms in drug discovery [J]. Int J Mol Sci, 2019, 20(18):4331.
 [11] Bai  G, Pan Y, Zhang Y, et al. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives [J]. Food Chem, 2023, 429: 136836.
 [12] Kim  S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces [J]. Nucleic Acids Res, 2021, 49(D1): D1388-D1395.
 [13] Daina  A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules [J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
 [14] Wang  X, Shen Y, Wang S, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database [J]. Nucleic Acids Res, 2017, 45(W1): W356-W360.
 [15] UniProt  Consortium. UniProt: the Universal Protein Knowledgebase in 2023 [J]. Nucleic Acids Res, 2023, 51(D1): D523-D531.
 [16] Szklarczyk  D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest [J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
 [17] Berman  HM, Westbrook J, Feng Z, et al. The protein data bank [J]. Nucleic Acids Res, 2000, 28(1): 235-242.
 [18] Lu  L, Yang LK, Yue J, et al. Scutellarin alleviates depression-like behaviors induced by LPS in mice partially through inhibition of astrocyte-mediated neuroinflammation [J]. Neurosci Lett, 2021, 765:136284.
 [19] Deng  M, Sun J, Peng L, et al. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury [J]. Phytomedicine, 2022, 103:154214.
 [20] Wen  L, He T, Yu A, et al. Breviscapine: a review on its phytochemistry, pharmacokinetics and therapeutic effects [J]. Am J Chin Med, 2021, 49(6): 1369-1397.
 [21] Duan  Z, Peng Y, Xu D, et al. Scutellarin alleviates neuronal apoptosis in ischemic stroke via activation of the PI3K/Akt signaling pathway [J]. Int J Mol Sci, 2025, 26(5):2175.
 [22] Zhang  S, Wei D, Lv S, et al. Scutellarin modulates the microbiota-gut-brain axis and improves cognitive impairment in APP/PS1 mice [J]. J Alzheimers Dis, 2022, 89(3): 955-975.
 [23] Wan  C, Pei J, Wang D, et al. Identification of m6A methylation-related genes in cerebral ischaemia-reperfusion of Breviscapus therapy based on bioinformatics methods [J]. BMC Med Genomics, 2023, 16(1): 210.
 [24] Li  Y, Li S, Li D. Breviscapine alleviates cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in a rat model [J]. ACS Chem Neurosci, 2020, 11(24): 4489-4498.
 [25] Pengyue  Z, Tao G, Hongyun H, et al. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra [J]. Biomed Pharmacother, 2017, 90: 69-76.
 [26] Jiao  W, Mi S, Sang Y, et al. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol [J]. Food Chem, 2022, 374: 131755.
 [27] Feng  C, Wan H, Zhang Y, et al. Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway [J]. Front Pharmacol, 2020, 11: 298.
 [28] Du  Sh, Liu J, Liu T, et al. Effect of leonurine on pathological changes of cerebral tissue in ischemic stroke rats based on PI3K/Akt/NF-κB signaling pathway [J]. Chinese Journal of Arteriosclerosis, 2019, 27(10): 853-861. (in Chinese) 
杜帅, 刘佳, 刘婷,等. 基于PI3K/Akt/NF-κB信号通路探讨益母草碱对缺血性脑卒中大鼠脑组织病理变化的影响 [J]. 中国动脉硬化杂志, 2019, 27(10): 853-861.
 [29] Li  J, Yuan J. Caspases in apoptosis and beyond [J]. Oncogene, 2008, 27(48): 6194-6206.
 [30] Fan  W, Dai Y, Xu H, et al. Caspase3 modulates regenerative response after stroke [J]. Stem Cells, 2014, 32(2): 473-486.
 [31] Jiang  H, Sun Z, Zhu X, et al. Essential genes Ptgs2, Tlr4, and Ccr2 regulate neuro-inflammation during the acute phase of cerebral ischemic in mice [J]. Sci Rep, 2023, 13(1): 13021.
 [32] Miao  Z, Guo M, Zhou S, et al. Smoking and drinking influence the advancing of ischemic stroke disease by targeting PTGS2 and TNFAIP3 [J]. Exp Ther Med, 2018, 16(1): 61-66.
 [33] Gaur  V, Kumar A. Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury [J]. Drug Chem Toxicol, 2012, 35(2): 218-224.
 [34] Shim  JW, Madsen JR. VEGF signaling in neurological disorders [J]. Int J Mol Sci, 2018, 19(1): 275.
 [35] Chen  X, Wu H, Chen H, et al. Astragaloside VI promotes neural stem cell proliferation and enhances neurological function recovery in transient cerebral ischemic injury via activating EGFR/MAPK signaling cascades [J]. Mol Neurobiol, 2019, 56(4): 3053-3067.
 [36] Zhu  H, Hu S, Li Y, et al. Interleukins and ischemic stroke [J]. Front Immunol, 2022, 13: 828447.
 [37] Vamecq  J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors [J]. Lancet, 1999, 354(9173): 141-148.
 [38] Luo  R, Su L Y, Li G, et al. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model [J]. Autophagy, 2020, 16(1): 52-69. 
PDF(4819 KB)

Accesses

Citation

Detail

Sections
Recommended

/