Targeted therapy for bone metastases of malignant tumors 

ZHOU Kun-hao ZHANG Hong-quan YU Yu

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 619-624.

PDF(1462 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(1462 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 619-624. DOI: 10.16098/j.issn.0529-1356.2025.05.015
Review

Targeted therapy for bone metastases of malignant tumors 

  • ZHOU  Kun-hao  ZHANG  Hong-quan  YU  Yu*
Author information +
History +

Abstract

Bone metastasis is a pathological condition in which malignant tumors originating from non-osseous tissues disseminate to bone tissue via the bloodstream, lymphatic system, or direct infiltration,  inducing  bone destruction and severe pain. This condition disrupts normal bone metabolism and triggers various skeletal-related events (SREs), thereby significantly impairing patients’ quality of life. Current therapeutic strategies for bone metastasis include surgical intervention, radiotherapy, targeted therapy, and immunotherapy. Among these, bone-targeted therapy has shown promising potential in managing bone metastasis. Recent advancements have highlighted osteoblasts and osteoclasts, the primary regulators of bone remodeling, as critical therapeutic targets. Consequently, several bone-targeted drugs have been developed. These agents not only substantially reduce the incidence of SREs but also markedly enhance patients’quality of life and clinical outcomes. In this review, we elucidate the mechanisms of drug action targeting osteoclasts and osteoblasts, and propose potential directions for future research in bone-targeted therapy. 

Key words

 Cancer / Bone metastasis / Targeted therapy / Osteoblast / Osteoclast

Cite this article

Download Citations
ZHOU Kun-hao ZHANG Hong-quan YU Yu. Targeted therapy for bone metastases of malignant tumors [J]. Acta Anatomica Sinica. 2025, 56(5): 619-624 https://doi.org/10.16098/j.issn.0529-1356.2025.05.015

References

 [1] Kang J, La manna F, Bonollo F, et al. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer [J]. Cancer Lett, 2022, 530: 156-169.
 [2] Wang Y, Ye F, Liang Y, et al. Breast cancer brain metastasis: insight into molecular mechanisms and therapeutic strategies [J]. Br J Cancer, 2021, 125(8): 1056-1067.
 [3] Clézardin P, Coleman R, Puppo M, et al. Bone metastasis: mechanisms, therapies, and biomarkers [J]. Physiol Rev, 2021, 101(3): 797-855.
 [4] Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field [J]. Nat Rev Cancer, 2014, 14(9): 611-622.
 [5] Clézardin P, Benzad I, Croucher PI. Bisphosphonates in preclinical bone oncology [J]. Bone, 2011, 49(1): 66-70.
 [6] Valachis A, Polyzos NP, Coleman RE, et al. Adjuvant therapy with zoledronic acid in patients with breast cancer: a systematic review and meta-analysis [J]. Oncologist, 2013, 18(4): 353-361.
 [7] Coleman R, Body JJ, Aapro M, et al. Bone health in cancer patients: ESMO Clinical Practice Guidelines [J]. Ann Oncol, 2014, 25 Suppl 3: iii124-iii137.
 [8] Hortobagyi GN, van Poznak C, Harker WG, et al. Continued treatment effect of zoledronic acid dosing every 12 vs 4 weeks in women with breast cancer metastatic to bone: the Optimize-2 randomized clinical trial [J]. JAMA Oncol, 2017, 3(7): 906-912.
 [9] Clemons M, Ong M, Stober C, et al. A randomised trial of 4-versus 12-weekly administration of bone-targeted agents in patients with bone metastases from breast or castration-resistant prostate cancer [J]. Eur J Cancer, 2021, 142: 132-140.
 [10] Hadji P, Coleman RE, Wilson C, et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel [J]. Ann Oncol, 2016, 27(3): 379-390.
 [11] Fernández R, Eppard E, Lehnert W, et al. Evaluation of safety and dosimetry of 177Lu-DOTA-ZOL for therapy of bone metastases [J]. J Nucl Med, 2021, 62(8): 1126-1132.
 [12] Kostenuik PJ, Nguyen HQ, Mccabe J, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL [J]. J Bone Miner Res, 2009, 24(2): 182-195.
 [13] Brown JE, Coleman RE. Denosumab in patients with cancer-a surgical strike against the osteoclast [J]. Nat Rev Clin Oncol, 2012, 9(2): 110-118.
 [14] Lipton A, Fizazi K, Stopeck AT, et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics [J]. Eur J Cancer, 2016, 53: 75-83.
 [15] Fizazi K, Bosserman L, Gao G, et al. Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial [J]. J Urol, 2009, 182(2):509-515.
 [16] Zhang S, Yin Y, Xiong H, et al. Efficacy, safety, and population pharmacokinetics of MW032 compared with denosumab for solid tumor-related bone metastases: a randomized, double-blind, phase 3 equivalence trial [J]. JAMA Oncol, 2024, 10(4): 448-455.
 [17] Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption [J]. Nat Med, 2016, 22(5): 539-546.
 [18] Yue Z, Niu X, Yuan Z, et al. RSPO2 and RANKL signal through LGR4 to regulate osteoclastic premetastatic niche formation and bone metastasis [J]. J Clin Invest, 2022, 132(2):e144579.
 [19] Littlewood-Evans AJ, Bilbe G, Bowler WB, et al. The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma [J]. Cancer Res, 1997, 57(23): 5386-5390.
 [20] Le Gall C, Bellahcène A, Bonnelye E, et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden [J]. Cancer Res, 2007, 67(20): 9894-9902.
 [21] Mcclung MR, O’donoghue ML, Papapoulos SE, et al. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study [J]. Lancet Diabetes Endocrinol, 2019, 7(12): 899-911.
 [22] Papapoulos S, Bone H, Cosman F, et al. Incidence of hip and subtrochanteric/femoral shaft fractures in postmenopausal women with osteoporosis in the phase 3 long-term odanacatib fracture trial [J]. J Bone Miner Res, 2021, 36(7): 1225-1234.
 [23] Duong LT, Wesolowski GA, Leung P, et al. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis [J]. Mol Cancer Ther, 2014, 13(12): 2898-2909.
 [24] Bertoldo F, Silvestris F, Ibrahim T, et al. Targeting bone metastatic cancer: role of the mTOR pathway [J]. Biochim Biophys Acta, 2014, 1845(2): 248-254.
 [25] Browne AJ, Kubasch ML, G?bel A, et al. Concurrent antitumor and bone-protective effects of everolimus in osteotropic breast cancer [J]. Breast Cancer Res, 2017, 19(1): 92.
 [26] Hortobagyi GN. Everolimus plus exemestane for the treatment of advanced breast cancer: a review of subanalyses from BOLERO-2 [J]. Neoplasia, 2015, 17(3): 279-288.
 [27] Gnant M, Baselga J, rugo HS, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2 [J]. J Natl Cancer Inst, 2013, 105(9): 654-663.
 [28] Jiang P, Gao W, Ma T, et al. CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages [J]. Theranostics, 2019, 9(10): 2950-2966.
 [29] Wang K, Gu Y, Liao Y, et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain [J]. J Clin Invest, 2020, 130(7): 3603-3620.
 [30] Baksh D, Tuan RS. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells [J]. J Cell Physiol, 2007, 212(3): 817-826.
 [31] Kasoha M, Bohle RM, Seibold A, et al. Dickkopf-1 (Dkk1) protein expression in breast cancer with special reference to bone metastases [J]. Clin Exp Metastasis, 2018, 35(8): 763-775.
 [32] Fulciniti M, Tassone P, Hideshima T, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma [J]. Blood, 2009, 114(2): 371-379.
 [33] Cosman F, Crittenden DB, Grauer A. Romosozumab treatment in postmenopausal osteoporosis [J]. N Engl J Med, 2017, 376(4): 396-397.
 [34] Florio M, Gunasekaran K, Stolina M, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair [J]. Nat Commun, 2016, 7: 11505.
 [35] Sun X, Li K, Hase M, et al. Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling [J]. Theranostics, 2022, 12(2): 929-943.
 [36] Shibata H, Yasuda H, Sekine N, et al. Activin A increases intracellular free calcium concentrations in rat pancreatic islets [J]. FEBS Lett, 1993, 329(1-2): 194-198.
 [37] Sugii H, Albougha MS, Adachi O, et al. Activin A promotes osteoblastic differentiation of human preosteoblasts through the ALK1-Smad1/5/9 pathway [J]. Int J Mol  Sci, 2021, 22(24):13491.
 [38] Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclast induction [J]. Biochem Biophys Res Commun, 2000, 268(1): 2-7.
 [39] Ikenoue T, Jingushi S, Urabe K, et al. Inhibitory effects of activin-A on osteoblast differentiation during cultures of fetal rat calvarial cells [J]. J Cell Biochem, 1999, 75(2): 206-214.
 [40] Shimizu K, Kikuta J, Ohta Y, et al. Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction [J]. Nat Commun, 2023, 14(1): 4417.
 [41] Chantry AD, Heath D, Mulivor AW, et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo [J]. J Bone Miner Res, 2010, 25(12): 2633-2646.
 [42] Sugatani T, Agapova OA, Fang Y, et al. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease [J]. Kidney Int, 2017, 91(1): 86-95.
 [43] Morse  A, Cheng TL, Peacock L, et al. RAP-011 augments callus formation in closed fractures in rats [J]. J Orthop Res, 2016, 34(2): 320-330.
 [44] Yin X, Chen Z, Liu Z, et al. Tissue transglutaminase (TG2) activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line [J]. Braz J Med Biol Res, 2012, 45(8): 693-700.
 [45] Kim WS, Kim H, Jeong EM, et al. Transglutaminase 2 regulates osteoclast differentiation via a Blimp1-dependent pathway [J]. Sci Rep, 2017, 7(1): 10626.
 [46] Yang Z, Zhang XW, Zhuo FF, et al. Allosteric activation of transglutaminase 2 via inducing an “open” conformation for osteoblast differentiation [J]. Adv Sci (Weinh), 2023, 10(18): e2206533.
 [47] Han Y, you X, Xing W, et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts [J]. Bone Res, 2018, 6: 16.
 [48] Franzolin G, Brundu S, Cojocaru CF, et al. PlexinB1 inactivation reprograms immune cells in the tumor microenvironment, inhibiting breast cancer growth and metastatic dissemination [J]. Cancer Immunol Res, 2024, 12(9): 1286-1301.
PDF(1462 KB)

Accesses

Citation

Detail

Sections
Recommended

/