Artificial intelligence-driven personalized teaching new paradigm for thoracic wall dissection

CHENG Quan-cheng LIU Ping LIU Huai-cun WANG Liang ZHANG Yan LUAN Li-ju CHEN Chun-hua LIU Shu-wei ZHANG Wei-guang

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 601-606.

PDF(4006 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(4006 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 601-606. DOI: 10.16098/j.issn.0529-1356.2025.05.012
Medical Education

Artificial intelligence-driven personalized teaching new paradigm for thoracic wall dissection

  • CHENG  Quan-cheng1  LIU  Ping2  LIU  Huai-cun1  WANG  Liang3  ZHANG  Yan1  LUAN Li-ju1 CHEN  Chun-hua LIU  Shu-wei4*  ZHANG  Wei-guang1* 
Author information +
History +

Abstract

Facing of mounting resource constraints and rising demands for personalization in medical education, regional anatomy teaching urgently requires transformation. In this paper, we focus on the regional anatomy of the thoracic wall, in order to explore a novel AI-driven teaching paradigm. Anchored in the core principle of “virtual-real integration with cadaveric dissection as the cornerstone,” the paradigm redefines educational objective  and constructs an intelligent, closed-loop teaching model integrating students, computers, and instructors. Leveraging the robust support of digital intelligence (e.g. , DeepSeek), this paradigm incorporates interactive method including group collaboration, branching instruction, and gamified assessments. It achieves a comprehensive intelligent transformation of the entire teaching process—from goal setting and plan customization to activity implementation, task completion, outcome exchange, multidimensional evaluation, and reflective iteration. This new paradigm centers on medical students and leverages digital intelligence to activate deep personalized learning potential. It seamlessly integrates fundamental anatomical knowledge with clinical scenarios (e.g. , key anatomy in breast cancer surgery, flap design in breast reconstruction), and significantly enhances clinical decision-making abilities, scientific research and innovative thinking, as well as medical humanistic literacy, paving a new path for intelligent medical education.

Key words

Thoracic wall
/ Artificial intelligence / Regional anatomy / Personalized teaching / Intelligent education / Virtual-real integration / Human

Cite this article

Download Citations
CHENG Quan-cheng LIU Ping LIU Huai-cun WANG Liang ZHANG Yan LUAN Li-ju CHEN Chun-hua LIU Shu-wei ZHANG Wei-guang. Artificial intelligence-driven personalized teaching new paradigm for thoracic wall dissection[J]. Acta Anatomica Sinica. 2025, 56(5): 601-606 https://doi.org/10.16098/j.issn.0529-1356.2025.05.012

References

 [1] Pan SQ, Chan LK, Yan Y, et al. Survey of gross anatomy education in China: the past and the present[J]. Anat Sci Educ, 2020, 13(3):387-397.
 [2] Li Zh, Huang HX, Li L, et al. Practice of surgical clinic-oriented teaching reform in regional anatomy[J]. Journal of Nanjing Medical University (Social Sciences), 2015,15(5):416-418. (in Chinese) 
李芝, 黄华兴, 李雷, 等. 以外科临床为导向的局部解剖学教学改革实践[J]. 南京医科大学学报(社会科学版), 2015,15(5):416-418.
 [3] Abdellatif H, Al Mushaiqri M, Albalushi H, et al. Teaching, learning and assessing anatomy with artificial intelligence: the road to a better future[J]. Int J Environ Res Public Health, 2022,19(21):14299.
 [4] Pu QP, Wang XT. Theoretical framework and practical pathway of AI-assisted learning analytics[J]. University Education Science, 2024, (3):31-38. (in Chinese) 
蒲清平, 王雪婷. 人工智能助力学情分析的理论框架与实践路径[J]. 大学教育科学,2024, (3):31-38.
 [5] Qian YH, Zhang M. Opportunities and challenges of AI-empowered anatomy teaching[J/OL]. China Medical Education Technology. https://link.cnki.net/urlid/61.1317.G4.20250530.0939.002. (in Chinese) 
钱亦华, 张明. 人工智能赋能解剖学教学机遇与挑战[J/OL]. 中国医学教育技术. https://link.cnki.net/urlid/61.1317.G4.20250530.0939.002.
 [6] Xiong TQ, Yan BCh, Wu RH, et al. Application of virtual simulation combined with digital human system in experimental teaching of human anatomy for nursing majors[J]. Chinese Journal of Anatomy, 2024,47(1):69-71. (in Chinese) 
熊天庆, 颜丙春, 乌日汗, 等. 基于虚拟仿真技术结合数字人系统的实验教学方法在护理专业人体解剖学教学中的应用[J]. 解剖学杂志, 2024, 47(1):69-71.
 [7] Liu Y, Ren LJ, Wang Y, et al. Application of virtual reality technology in teaching neuroanatomy[J]. Chinese Journal of Stroke, 2022, 17(9):1027-1030. (in Chinese) 
刘圆, 任力杰, 王洋, 等. 虚拟现实技术在神经系统解剖学教学中的应用研究[J]. 中国卒中杂志, 2022, 17(9):1027-1030.
 [8] Wang L, Wang JJ. Application of artificial intelligence in teaching gastrointestinal surgical oncology[J]. Journal of Digestive Oncology (Electronic Edition), 2024, 16(4):502-506. (in Chinese) 
王亮, 王俊江. 人工智能在消化肿瘤外科教学中的应用[J]. 消化肿瘤杂志(电子版), 2024, 16(4):502-506.
 [9] Yang J, Nie TJ, Lu Y, et al. Development and application of VR experimental teaching platform for fundamentals of operative surgery[J]. Journal of Medical Research, 2024,53(8):177-181. (in Chinese) 
杨静, 乜铁建, 路媛, 等. 外科手术学基础VR实验教学平台的建设与应用[J]. 医学研究杂志, 2024,53(8):177-181.
 [10] Ning XM, Jiao XB. Application of micro-course combined with challenge-based learning in clinical laboratory fundamentals[J]. Scientific Consult, 2025,(10):204-207. (in Chinese) 
宁晓敏, 焦啸波. 微课联合闯关式教学法在临床基础检验课程中的应用研究[J]. 科学咨询,2025,(10):204-207.
 [11] Wu J, Luo YF, Tang ZhSh, et al. Gamified challenge-based teaching mode in normal human anatomy education[J]. Chinese Journal of Anatomy,2019,42(5):529-531. (in Chinese) 
武静, 罗亚飞, 唐中生等. 闯关游戏型教学模式在正常人体解剖学教学中的探索[J]. 解剖学杂志, 2019,42(5):529-531.
 [12] Wang QM, Wang H. Research on AI-driven personalized feedback system for medical simulation teaching[J]. Science Education Guide, 2025,(13):7-10. (in Chinese) 
王齐明, 王昊. 课堂智能分析大模型驱动的医学模拟教学个性化反馈系统研究[J]. 科教导刊, 2025, (13):7-10.
 [13] Tan YN, Bao WH, Gu JX, et al. Research on talent cultivation model in application-oriented universities driven by artificial intelligence[J]. Journal of Heilongjiang Institute of Teacher Development, 2025, 44(6):61-65. (in Chinese) 
谭旖旎, 包文慧, 谷建晓, 等. 人工智能驱动下应用型本科高校人才培养模式研究[J]. 黑龙江教师发展学院学报, 2025,44(6):61-65.
 [14] Zeng N, Fan YF, Yang J, et al. Application of digital virtual technology in clinical teaching of hepatobiliary surgery[J]. China Continuing Medical Education, 2018, 10(33):16-19. (in Chinese) 
曾宁, 范应方, 杨剑, 等. 数字虚拟技术在肝胆外科临床教学中的应用研究[J]. 中国继续医学教育, 2018, 10(33):16-19.
 [15] Du J, Zhao JM. Exploration on deepseek-assisted pathology teaching reform[J/OL]. China Medical Education Technology.
[2025-06-16].http://link.cnki.net/urlid/61.1317.G4.20250616.1351.013. (in Chinese) 
杜江, 赵金铭. Deepseek辅助病理学教学改革探索[J]. 中国医学教育技术.[2025-06-16].http://link.cnki.net/urlid/61.1317.G4.20250616.1351.013.
 [16] Zhu TT, Li B, Wang ChCh, et al. Innovative applications and challenges of artificial intelligence in “Basic Medicine” curriculum teaching[J]. Technology Wind, 2025, (13):115-117. (in Chinese) 
朱厅厅, 李兵, 王呈呈, 等. 人工智能在“基础医学”课程教学中的创新应用与挑战[J]. 科技风, 2025;(13):115-117.
PDF(4006 KB)

Accesses

Citation

Detail

Sections
Recommended

/