Role of myelin transcription factor 1-like in amyotrophic lateral sclerosis#br#

LÜ Shu-chang GUAN Ying-jun CHEN Xiao-su ZHANG Hao-yun LIU Jin-meng YAN Qiu-peng CHEN Yan-chun

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 524-532.

PDF(5248 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(5248 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 524-532. DOI: 10.16098/j.issn.0529-1356.2025.05.003
Neurbiology

Role of myelin transcription factor 1-like in amyotrophic lateral sclerosis#br#

  • LÜ  Shu-chang1,2  GUAN  Ying-jun1,2*  CHEN  Xiao-su1,2  ZHANG  Hao-yun2  LIU  Jin-meng2  YAN  Qiu-peng2  CHEN  Yan-chun1,2* 
Author information +
History +

Abstract

Objective To investigate the expression of myelin transcription factor 1-like (MYT1L) during amyotrophic lateral sclerosis (ALS) progression and its association with neuronal degeneration through bioinformatics analysis combined with in vivo and in vitro experiments.   Methods Bioinformatics analysis of the GSE106803 dataset from the Gene Expression Omnibus (GEO) database revealed significant down-regulation of MYT1L in spinal cords of ALS transgenic mice carrying the human superoxide dismutase 1 mutant gene (hSOD1G93A) compared to the wild-type (WT) mice. hSOD1G93A transgenic mice and their WT littermates were selected to analyze MYT1L mRNA and protein changes in spinal cord tissues at different disease stages using Real-time PCR and Western blotting. Double immunofluorescent staining was used to determine the distribution and cellular localization of MYT1L in the spinal cord of mice at the middle stage of the disease. An ALS cellular model was established using hSOD1G93A mutant NSC34 cells, with hSOD1WT NSC34 cells as controls. MYT1L expression and distribution were assessed in these cells via Real-time PCR, Western blotting, and immunofluorescent staining. Based on the GSE76220 dataset from the GEO database, differentially expressed genes (DEGs) between MYT1L high -and low-expression groups in lumbar spinal motor neurons of ALS patients were identified, followed by Gene Ontology (GO) functional enrichment analysis. MYT1L overexpression was induced in the ALS cellular model to evaluate alterations in cell viability and neurite outgrowth.   Results In the GSE106803 dataset, MYT1L expression was significantly down-regulated in the spinal cord of ALS mice. Animal experiments confirmed progressive reductions in MYT1L mRNA and protein levels in spinal cord tissues of ALS mice during mid- and late-disease stages. Compared to the WT group, MYT1L expression decreased in motor neurons of the lumbar spinal cord gray matter anterior horn in ALS mice, while it increased in astrocytes. In vitro, hSOD1G93Amutant NSC34 cells exhibited significantly reduced MYT1L expression than controls, with MYT1L localized to both the cytoplasm and nucleus. DEGs between MYT1L high-and low-expression groups in lumbar spinal cord motor neurons of ALS patients (GSE76220 dataset) were enriched in synaptic-related functions through GO analysis. Overexpression of MYT1L in hSOD1G93A mutant NSC34 cells enhanced cell viability and promoted neurite outgrowth.    Conclusion Aberrantly low expression of MYT1L is closely associated with ALS pathogenesis. Overexpression of MYT1L promotes neurite growth and exerts protective effects on ALS motor neurons, suggesting its therapeutic potential. 

Key words

Amyotrophic lateral sclerosis / Myelin transcription factor 1-like / Neurodegeneration / NSC34 cell / Western blotting / Transgenic mouse

Cite this article

Download Citations
LÜ Shu-chang GUAN Ying-jun CHEN Xiao-su ZHANG Hao-yun LIU Jin-meng YAN Qiu-peng CHEN Yan-chun. Role of myelin transcription factor 1-like in amyotrophic lateral sclerosis#br#[J]. Acta Anatomica Sinica. 2025, 56(5): 524-532 https://doi.org/10.16098/j.issn.0529-1356.2025.05.003

References

 [1] Sun H, Li M, Ji Y, et al. Identification of regulatory factors and prognostic markers in amyotrophic lateral sclerosis[J]. Antioxidants (Basel), 2022, 11(2): 303.
 [2] Chen X, Lv S, Liu J, et al. Exploring the role of axons in ALS from multiple perspectives[J]. Cells, 2024, 13(24): 2076.
 [3] Kao CS, Bruggen R van, Kim JR, et al. Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS[J]. Nat Commun, 2020, 11(1): 5304.
 [4] Saini A, Chawla PA. Breaking barriers with tofersen: enhancing therapeutic opportunities in amyotrophic lateral sclerosis[J]. Eur J Neurol, 2024, 31(2): e16140.
 [5] Coursimault J, Guerrot AM, Morrow MM, et al. MYT1L-associated neurodevelopmental disorder: description of 40 new cases and literature review of clinical and molecular aspects[J]. Hum Genet, 2022, 141(1): 65-80.
 [6] D’Erchia AM, Gallo A, Manzari C, et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS[J]. Sci Rep, 2017, 7(1): 10046.
 [7] Benatar M, Robertson J, Andersen PM. Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention[J]. Lancet Neurol, 2025, 24(1): 77-86.
 [8] Meng FD, Guan YJ, Zhao ZhH,et al. Expression of protein tyrosine kinase 7 and receptor tyrosine kinase-like orphan receptor 2 in the brainstem of hSOD1-G93A mutant amyotrophic lateral sclerosis transgenic mice [J]. Acta Anatomica Sinica, 2022,53(6):689-697.(in Chinese) 
孟凡迪,管英俊,赵振涵,等. 蛋白酪氨酸激酶7和受体酪氨酸激酶样孤儿受体2在hSOD1-G93A突变肌萎缩侧索硬化症转基因小鼠脑干中的表达[J].解剖学报, 2022, 53(6): 689-697.
 [9] Liu J, Zhou F, Chen Y, et al. Wnt5a protects motor neurons in amyotrophic lateral sclerosis by regulating the Wnt/Ca2+signaling pathway[J]. Am J Transl Res, 2022, 14(8): 5343-5362.
 [10] Chen YCh, Guan YJ, Liu YX, et al. Protective role of AKT-glycogen synthase kinase-3β signaling pathway in the N2a cell with SOD1G93Amutation [J]. Acta Anatomica Sinica, 2016,47(4):433-441.(in Chinese) 
陈燕春,管英俊,刘永新,等. AKT-糖原合成激酶-3β信号通路对SOD1G93A突变N2a细胞的保护作用[J].解剖学报, 2016, 47(4): 433-441.
 [11] Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1): W234-W241.
 [12] Ding K, Zhang FP, Qi GX, et al. Role of zinc finger protein 36, C3H type-like 1 mediating astrocytes activation in motor neuron degeneration in amyotrophic lateral sclerosis [J]. Acta Anatomica Sinica, 2022, 53(3):273-280.(in Chinese) 
丁康,张烽萍,齐高秀,等. C3H1型锌指结合蛋白36介导的星形胶质细胞活化在肌萎缩侧索硬化症运动神经元退变中的作用[J].解剖学报, 2022, 53(3): 273-280.
 [13] Chen J, Yen A, Florian CP, et al. MYT1L in the making: emerging insights on functions of a neurodevelopmental disorder gene[J]. Transl Psychiatry, 2022, 12(1): 292.
 [14] Pineda SS, Lee H, Ulloa-Navas MJ, et al. Singlecell dissection of the human motor and prefrontal cortices in ALS and FTLD[J]. Cell, 2024, 187(8): 1971-1989.e16.
 [15] Kepa A, Martinez Medina L, Erk S, et al. Associations of the intellectual disability gene MYT1L with helix-loop-helix gene expression, hippocampus volume and hippocampus activation during memory retrieval[J]. Neuropsychopharmacology, 2017, 42(13): 2516-2526.
 [16] Geest AT van der, Jakobs CE, Ljubikj T, et al. Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids[J]. Acta Neuropathol Commun, 2024, 12(1): 152.
 [17] Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons[J]. Nat Neurosci, 2007, 10(5): 615-622.
 [18] Torper O, Pfisterer U, Wolf DA, et al. Generation of induced neurons via direct conversion in vivo[J]. Proc Natl Acad Sci USA, 2013, 110(17): 7038-7043.
 [19] Kim S, Oh H, Choi SH, et al. Postnatal age-differential ASD-like transcriptomic, synaptic, and behavioral deficits in Myt1l-mutant mice[J]. Cell Rep, 2022, 40(12): 111398.
 [20] Yen A, Sarafinovska S, Chen X, et al. MYT1L deficiency impairs excitatory neuron trajectory during cortical development[J]. Nat Commun, 2024, 15(1): 10308.
 [21] Winanto, Khong ZJ, Soh BS, et al. Organoid cultures of MELAS neural cells reveal hyperactive Notch signaling that impacts neurodevelopment[J]. Cell Death Dis, 2020, 11(3): 182.
 [22] Mall M, Kareta MS, Chanda S, et al. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates[J]. Nature, 2017, 544(7649): 245-249.
PDF(5248 KB)

Accesses

Citation

Detail

Sections
Recommended

/