Construction and validation of a mouse model for optically activation of oligodendrocyte precursor cells

WANG Shu-yue SHENYANG Bei-na HUANG Nan-xin LI Si-wei YU Bin WANG Yu-xin XIAO Lan

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 507-514.

PDF(16372 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(16372 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (5) : 507-514. DOI: 10.16098/j.issn.0529-1356.2025.05.001
Neurbiology

Construction and validation of a mouse model for optically activation of oligodendrocyte precursor cells

  • WANG  Shu-yue1  SHENYANG  Bei-na2  HUANG  Nan-xin1  LI  Si-wei1  YU  Bin2  WANG  Yu-xin3*  XIAO  Lan 2* 
Author information +
History +

Abstract

Objective To develop and validate a transgenic mouse model enabling specific and inducible optogenetic activation of oligodendrocyte precursor cells (OPCs).    Methods A conditional allele for the photosensitive opsin chicken opsin 5(cOpn5) (Rosa26-LSL-cOpn5) was generated using CRISPR/Cas9 technology. These mice were subsequently crossed with NG2-CreERT transgenic mice to produce NG2-CreERT;cOpn5 animals. In this model, tamoxifen administration induces Cre-mediated recombination, leading to specific expression of cOpn5 in NG2-positive OPCs. The specificity and efficiency of cOpn5 expression in OPCs were confirmed by  immunofluorescent staining. Functional validation of light-induced OPC activation was performed by using calcium imaging in acute brain slices after stimulation with 470nm blue light.    Results Immunofluorescence analysis confirmed robust and specific expression of cOpn5 within NG2-positive OPCs in the brains of tamoxifentreated NG2-CreERT;cOpn5 mice. Crucially, calcium imaging of acute brain slices from these mice demonstrated a significant increase in intracellular calcium levels in cOpn5-expressing OPCs upon stimulation with 470nm blue light, indicating successful optogenetic activation.   Conclusion We have successfully generated and validated a novel transgenic mouse model (NG2-CreERT;cOpn5) that permits specific and inducible optogenetic activation of OPCs. This model provides a novel tool for subsequent in vivo studies of the role and regulating mechanisms of OPCs in the central nervous system. 

Key words

Oligodendrocyte precursor cell / Chicken opsin 5 / G protein-coupled receptor / Calcium imaging / Optogenetics / Mouse

Cite this article

Download Citations
WANG Shu-yue SHENYANG Bei-na HUANG Nan-xin LI Si-wei YU Bin WANG Yu-xin XIAO Lan. Construction and validation of a mouse model for optically activation of oligodendrocyte precursor cells[J]. Acta Anatomica Sinica. 2025, 56(5): 507-514 https://doi.org/10.16098/j.issn.0529-1356.2025.05.001

References

 [1]Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease[J]. Trends Neurosci, 2001, 24(1): 39-47.
 [2] Peters A. A fourth type of neuroglial cell in the adult central nervous system[J]. J Neurocytol, 2004, 33(3): 345-357.
 [3]Wang Y, Su Y, Yu G, et al. Reduced oligodendrocyte precursor cell impairs astrocytic development in early life stress[J]. Adv Sci (Weinh), 2021, 8(16): e2101181.
 [4] Yu G, Su Y, Guo C, et al. Pathological oligodendrocyte precursor cells revealed in human schizophrenic brains and trigger schizophrenia-like behaviors and synaptic defects in genetic animal model[J]. Mol Psychiatry, 2022, 27(12): 5154-5166.
 [5] Bergles DE, Roberts JD, Somogyi P, et al. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus[J]. Nature, 2000, 405(6783): 187-191.
 [6] Ge WP, Yang XJ, Zhang Z, et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors[J]. Science, 2006, 312(5779): 1533-1537.
 [7] Lin SC, Bergles DE. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus[J]. Nat Neurosci, 2004, 7(1): 24-32.
 [8] Zhang X, Liu Y, Hong X, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety[J]. Nat Commun, 2021, 12(1): 5740.
 [9] Fenno L,Yizhar O,Deisseroth K.The development and application of optogenetics[J]. Annu Rev Neurosci, 2011, 34: 389-412.
 [10] Yizhar O, Fenno LE, Davidson TJ, et al. Optogenetics in neural systems[J]. Neuron, 2011, 71(1): 9-34.
 [11] Yu C,Cassar IR,Sambangi J,et al.Frequency-specific optogenetic deep brain stimulation of subthalamic nucleus improves parkinsonian motor behaviors[J]. J Neurosci, 2020, 40(22): 4323-4334.
 [12] Lin S, Du Y, Xia Y, et al. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms[J]. Front Psychiatry, 2022, 13: 950910.
 [13] Andrews JP, Geng J, Voitiuk K, et al. Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices[J]. Nat Neurosci, 2024, 27(12): 2487-2499.
 [14] Geng Y, Li Z, Zhu J, et al. Advances in optogenetics applications for central nervous system injuries[J]. J Neurotrauma, 2023, 40(13-14): 1297-1316.
 [15] Tan P, He L, Huang Y, et al. Optophysiology: illuminating cell physiology with optogenetics[J]. Physiol Rev, 2022, 102(3): 1263-1325.
 [16] Oh TJ, Fan H, Skeeters SS, et al. Steering molecular activity with optogenetics: recent advances and perspectives[J]. Adv Biol (Weinh), 2021, 5(5): e2000180.
 [17] Chen W, Li C, Liang W, et al. The roles of optogenetics and technology in neurobiology: a review[J]. Front Aging Neurosci, 2022, 14: 867863.
 [18] Zhang M, Chen T, Lu X, et al. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery[J]. Signal Transduct Target Ther, 2024, 9(1): 88.
 [19] Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions[J]. Physiol Rev, 2005, 85(4): 1159-1204.
 [20] Kadamur G, Ross EM. Mammalian phospholipase C[J]. Annu Rev Physiol, 2013, 75: 127-154.
 [21] Dai R, Yu T, Weng D, et al. A neuropsin-based optogenetic tool for precise control of G(q) signaling[J]. Sci China Life Sci, 2022, 65(7): 1271-1284.
 [22] Wang F, Yang YJ, Yang N, et al. Enhancing oligodendrocyte myelination rescues synaptic loss and improves functional recovery after chronic hypoxia[J]. Neuron, 2018, 99(4): 689-701.  
 [23] Schatteman GC, Morrison-Graham K, Van Koppen A, et al. Regulation and role of PDGF receptor alpha-subunit expression during embryogenesis[J]. Development, 1992, 115(1): 123-131.
 [24] Pringle NP, Mudhar HS, Collarini EJ, et al. PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage[J]. Development, 1992, 115(2): 535-551.
 [25] Oishi M, Passlick S, Yamazaki Y, et al. Separate optogenetic manipulation of Nerve/glial antigen 2 (NG2) glia and mural cells using the NG2 promoter[J]. Glia, 2023, 71(2): 317-333.
PDF(16372 KB)

Accesses

Citation

Detail

Sections
Recommended

/