[1]Zhang Q, Jia M, Wang Y, et al. Cell death mechanisms in cerebral ischemia-reperfusion injury[J]. Neurochem Res, 2022, 47(12):3525-3542.
[2]Keam SJ. Remimazolam: first approval[J]. Drugs, 2020, 80(6):625-633.
[3]Shi M, Chen J, Liu T, et al. Protective effects of remimazolam on cerebral ischemia/reperfusion injury in rats by inhibiting of NLRP3 inflammasome-dependent pyroptosis[J]. Drug Des Devel Ther, 2022, 16(1):413-423.
[4]Guo XL, Yang ChM, Wang Ch, et al. Mechanism of remazolam in reducing brain injury in sepsis mice based on Sirt1/FoxO1 pathway[J]. Acta Laboratorium Animalis Scientia Sinica, 2023, 31(1):82-90. (in Chinese)
郭小丽, 杨昌明, 王婵, 等. 基于Sirt1/FoxO1通路探讨瑞马唑仑减轻脓毒症小鼠脑损伤的机制研究[J]. 中国实验动物学报, 2023, 31(1):82-90.
[5]Franke M, Bieber M, Kraft P, et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice[J]. Brain Behav Immun, 2021, 92(1):223-233.
[6]Muraleedharan R, Dasgupta B. AMPK in the brain: its roles in glucose and neural metabolism[J]. FEBS J, 2022, 289(8):2247-2262.
[7]Cordero MD, Williams MR, Ryffel B. AMP-activated protein kinase regulation of the NLRP3 inflammasome during aging[J]. Trends Endocrinol Metab, 2018, 29(1):8-17.
[8]Liu JD, Chen Sh, Wang YCh, et al. β-caryophyllene improves cerebral ischemia reperfusion injury in rats via Notch1/NF-κB signal axis[J]. Journal of Third Military Medical University, 2021, 43(3):218-225. (in Chinese)
刘京东, 陈莎, 王钰淳, 等. β-石竹烯作用于Notch1/NF-κB信号轴对脑缺血再灌注损伤大鼠的改善作用[J]. 第三军医大学学报, 2021, 43(3):218-225.
[9]Yang Y, Yan H, Liang Y. Effect of Buyang Huanwu Decoction on cognitive function of ischemic stroke rats [J]. Chinese Traditional Patent Medicine, 2023, 45(4):1309-1314. (in Chinese)
张扬, 严寒, 梁永. 补阳还五汤对缺血性脑卒中大鼠认知功能的影响[J]. 中成药, 2023, 45(4):1309-1314.
[10]Liu H, Zhao Z, Yan M, et al. Calycosin decreases cerebral ischemia/reperfusion injury by suppressing ACSL4-dependent ferroptosis[J]. Arch Biochem Biophys, 2023, 734:109488.
[11]Xia J, Tan Y, Mao C, et al. Remazolam affects the phenotype and function of astrocytes to improve traumatic brain injury by regulating the Cx43[J]. Exp Gerontol, 2024, 189(1):112404.
[12]Liu S, Liu J, Wang Y, et al. Differentially expressed genes induced by β-caryophyllene in a rat model of cerebral ischemia-reperfusion injury[J]. Life Sci, 2021, 273(1):119293.
[13]Su XT, Wang L, Ma SM, et al. Mechanisms of acupuncture in the regulation of oxidative stress in treating ischemic stroke[J]. Oxid Med Cell Longev, 2020, 2020(1):7875396.
[14]Xu S, Huang P, Yang J, et al. Calycosin alleviates cerebral ischemia/reperfusion injury by repressing autophagy via STAT3/FOXO3a signaling pathway[J]. Phytomedicine, 2023, 115(1):154845.
[15]Guggilla S, Karthik M, Shylendra B. Regulation of antioxidant enzyme levels in rat brain[J]. Adv Exp Med Biol, 2021, 1339(1):21-26.
[16]Song L, Pei L, Yao S, et al. NLRP3 inflammasome in neurological diseases, from functions to therapies[J]. Front Cell Neurosci, 2017, 11(1):63.
[17]Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease[J]. Int J Mol Sci, 2020, 21(14):4987.
[18]Ma C, Wang X, Xu T, et al. Qingkailing injection ameliorates cerebral ischemia-reperfusion injury and modulates the AMPK/NLRP3 inflammasome signalling pathway[J]. BMC Complement Altern Med, 2019, 19(1):320.