Labeling chicken embryo auditory nerves using promoter-controlled green fluorescent protein

YONG An-lu WANG Xiao-yu

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (4) : 398-403.

PDF(2161 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(2161 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (4) : 398-403. DOI: 10.16098/j.issn.0529-1356.2025.04.003

Labeling chicken embryo auditory nerves using promoter-controlled green fluorescent protein

  • YONG  An-lu  WANG  Xiao-yu*
Author information +
History +

Abstract

Objective   To utilize promoter-controlled membrane-bound (myristoylated) green fluorescent protein (mGFP) to label the auditory nerve (AN) in chicken embryos, providing a higher-resolution map of AN development.    Methods  At chicken embryonic 2.5 day  (E2.5), mGFP plasmids controlled by the neurogenic differentiation factor 1 (NeuroD1) or GATA binding protein 3 (GATA3) promoters were microinjected and electroporated into the epithelium of otocyst in chicken embryos. The projection of AN axons to the cochlear nucleus in the brainstem was tracked at different developmental stages, and synapse formation was observed, and the labeling specificity of the two promoters was compared.   Results  Both NeuroD1 and GATA3 promoters controlled mGFP selectively labeled the AN, with mGFP-labeled AN axons projecting to the cochlear nucleus in the auditory brainstem. GATA3-mGFP specifically labeled early (E9-E10) projecting AN with significantly fewer labeling in vestibular nerves. NeuroD1-mGFP labeled auditory nerves throughout the development, and showed synaptic formation at E15. A additionally, NeuroD1-mGFP also labeled vestibular nerves projecting to the vestibular nuclei in the brainstem.   Conclusion  The use of promoter-controlled mGFP to label the AN provides a higher-resolution map of AN development. 

Key words

Auditory nerve / Neurogenic differentiation factor 1 / GATA binding protein 3 / Synaptogenesis / Immunofluorescence / Chicken embryo

Cite this article

Download Citations
YONG An-lu WANG Xiao-yu. Labeling chicken embryo auditory nerves using promoter-controlled green fluorescent protein[J]. Acta Anatomica Sinica. 2025, 56(4): 398-403 https://doi.org/10.16098/j.issn.0529-1356.2025.04.003

References

[1]Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss [J]. J Neurosci, 2009, 29(45): 14077-14085.
[2]Maricich SM, Xia A, Mathes EL, et al. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei [J]. J Neurosci, 2009, 29(36): 11123-11133.
[3]Hoshino N, Altarshan Y, Alzein A, et al. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem [J]. J Comp Neurol, 2021, 529(16): 3633-3654.
[4]Rubel EW, Parks TN. Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of n. magnocellularis and n. laminaris [J]. J Comp Neurol, 1975, 164(4): 411-433.
[5]Feng G, Mellor RH, Bernstein M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP [J]. Neuron, 2000, 28(1): 41-51.
[6]Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins [J]. Biochim Biophys Acta, 1999, 1451(1): 1-16.
[7]Elliott KL, Pavlínková G, Chizhikov VV, et al. Development in the mammalian auditory system depends on transcription factors [J]. Int J Mol Sci, 2021, 22(8):4189.
[8]Bell D, Streit A, Gorospe I, et al. Spatial and temporal segregation of auditory and vestibular neurons in the otic placode [J]. Dev Biol, 2008, 322(1): 109-120.
[9]Filova I, Dvorakova M, Bohuslavova R, et al. Combined Atoh1 and Neurod1 deletion reveals autonomous growth of auditory nerve fibers [J]. Mol Neurobiol, 2020, 57(12): 5307-5323.
[10]Liu M, Pereira FA, Price SD, et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems [J]. Genes Dev, 2000, 14(22): 2839-2854.
[11]Jones JM, Warchol ME. Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear [J]. J Comp Neurol, 2009, 516(6): 507-518.
[12]Lawoko-Kerali G, Rivolta MN, Lawlor P, et al. GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear [J]. Mech Dev, 2004, 121(3): 287-299.
[13]Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. 1951 [J]. Dev Dyn, 1992, 195(4): 231-272.
[14]Ishihara H, Engel JD, Yamamoto M. Structure and regulation of the chicken GATA-3 gene [J]. J Biochem, 1995, 117(3): 499-508.
[15]Kohl A, Hadas Y, Klar A, et al. Axonal patterns and targets of dA1 interneurons in the chick hindbrain [J]. J Neurosci, 2012, 32(17): 5757-5771.
[16]Kohl A, Hadas Y, Klar A, et al. Electroporation of the hindbrain to trace axonal trajectories and synaptic targets in the chick embryo [J]. J Vis Exp, 2013, (75): e50136.
[17]Fan Q, Zhang X, Wang Y, et al. Dissecting cell-autonomous function of fragile X mental retardation protein in an auditory circuit by in ovo electroporation [J]. J Vis Exp, 2022, (185):e64187.
[18]Jhaveri S, Morest DK. Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: a Golgi study [J]. Neuroscience, 1982, 7(4): 837-853.
[19]Whitehead MC, Morest DK. The development of innervation patterns in the avian cochlea [J]. Neuroscience, 1985, 14(1): 255-276.
[20]Adam J, Myat A, Le Roux I, et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development [J]. Development, 1998, 125(23): 4645-4654.
[21]Chen YH, Keiser MS, Davidson BL. Viral vectors for gene transfer [J]. Curr Protoc Mouse Biol, 2018, 8(4): e58.
[22]Parks TN, Rubel EW. Organization and development of the brain stem auditory nuclei of the chicken: primary afferent projections [J]. J Comp Neurol, 1978, 180(3): 439-448.
[23]Wang X, Zorio DAR, Schecterson L, et al. Postsynaptic FMRP regulates synaptogenesis in vivo in the developing cochlear nucleus [J]. J Neurosci, 2018, 38(29): 6445-6460.
[24]Fukui I, Ohmori H. Tonotopic gradients of membrane and synaptic properties for neurons of the chicken nucleus magnocellularis [J]. J Neurosci, 2004, 24(34): 7514-7523.
[25]Vercelli A, Repici M, Garbossa D, et al. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals [J]. Brain Res Bull, 2000, 51(1): 11-28.
[26]Wang X, Kohl A, Yu X, et al. Temporal-specific roles of fragile X mental retardation protein in the development of the hindbrain auditory circuit [J]. Development, 2020, 147(21): dev188797.

PDF(2161 KB)

Accesses

Citation

Detail

Sections
Recommended

/