[1] Hoshi K, Fujihara Y, Yamawaki T, et al. Biological aspects of tissue-engineered cartilage[J]. Histochem Cell Biol, 2018, 149(4): 375-381.
[2] Hawker GA, King LK. The burden of osteoarthritis in older adults[J]. Clin Geriatr Med, 2022, 38(2): 181-192.
[3] Pereira DR, Silva-Correia J, Oliveira JM, et al. Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface[J]. Biomater Adv, 2022, 133(2): 112611.
[4] Sina S, Morteza SN. 3D and 4D printing hydroxyapatitebased scaffolds for bone tissue engineering and regeneration[J]. Heliyon,2023, 9(9): 1-19.
[5] Yuan B, Chen H, Zhao R, et al. Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on M-Ca-Zn-Ag alloy to inhibit bacterial infection and promote bone regeneration[J]. Bioact Mate, 2022, 18:354-367.
[6] Sheng N, Jiakai C, Chen L, et al. Effects of extract solution from magnesium alloys supplemented with different compositions of rare earth elements on in vitro epithelial and osteoblast progenitor cells[J]. Front Bioeng Biotechnol, 2023, 11(5): 1138675.
[7] Wang K, Cheng Y, Yang X, et al. Cell responses to lanthanides and potential pharmacological actions of lanthanides[J].Met Ions Biol Syst, 2003, 40(1): 707-751.
[8] Zhang Y, Yan J, Xu J, et al. Phosphate polymer nanogel for selective and efficient rare earth element recovery[J]. Enviro Sci Technol, 2021, 55(18): 12549-12560.
[9] Kong WL, Yang Y, Shen FG, et al. Evalution of biological properties of Gd-doped hydroxyapatite bio-nanocomposites[J]. Acta Anatomica Sinica, 2024, 55(5):632-640. (in Chinese)
孔维丽,杨钰,申福国,等.掺钆羟基磷灰石生物钠米复合材料的生物性能评价[J].解剖学报,2024,55(5):632-640.
[10] Sun DM,Li WO,Wang TQ, et al.Standardization of ethical review for laboratory animal welfare and interpretation of the new national standards in China[J]. Chinese Journal of Comparative Medicine, 2018, 28(10): 133-137. (in Chinese)
孙德明,李蔚鸥,王天奇,等.实验动物福利伦理审查的标准化与我国新国标解读[J].中国比较医学杂志,2018,28(10):133-137.
[11] Zhang YQ, Fu L, Ren YY, et al. Isolation and culture of rat adipose-derived stem cells and differentiation into oligodendrocyte precursor cells[J]. Acta Anatomica Sinica, 2022, 53(5): 557-562. (in Chinese)
张雅群,付丽,任译延,等.大鼠脂肪间充质干细胞的分离、培养及其向少突胶质前体细胞的诱导分化[J].解剖学报,2022,53(5): 557-562.
[12] Xie QM, Sun YT, Xu H, et al. Glucose and serum deprivation under hypoxia treatment inducing oxidative stress and apoptosis in rat bone marrow mesenchymal stem cells through inhibition of Nrf2 signaling pathway[J]. Acta Anatomica Sinica, 2023, 54(3): 305-312. (in Chinese)
谢秋敏,孙艳婷,许皓,等.低氧低糖及血清剥夺联合处理抑制Nrf2信号通路诱发大鼠骨髓间充质干细胞氧化应激和凋亡[J].解剖学报,2023,54(3): 305-312.
[13] Du ZhP, Yin GT, Li MM, et al. Comparison of surface markers of mesenchymal stem cells from different sources[J]. Acta Anatomica Sinica, 2019, 50(5): 589-594. (in Chinese)
杜志朋,殷国田,李苗苗,等.不同来源间充质干细胞表面标记的比较[J].解剖学报,2019,50(5):589-594.
[14] Widhiyanto L, Utomo DN, Perbowo AP, et al. Macroscopic and histologic evaluation of cartilage regeneration treated using xenogenic biodegradable porous sponge cartilage scaffold composite supplemented with allogenic adipose derived mesenchymal stem cells(ASCs) and secretome: an in vivo experimental study[J]. J Biomater Appl, 2020, 35(3): 422-429.
[15] Zhang H, Zhou Y, Yu N, et al. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits[J]. Acta Biomater,2019,91:82-98.
[16] Yannian G, Yanran H, Wenping L, et al. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering[J].Bioact Mater,2024,34:51-63.
[17] Liang Q, Du L, Zhang R, et al. Stromal cell-derived factor-1/exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo[J].Cell Prolif,2021,54(3):e12997.
[18] Wang W, Li B, Yang J, et al. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs[J]. Biomaterials, 2010, 31(34): 8964-8973.
[19] Dickinson SC, Sims TJ, Pittarello L, et al. Quantitative outcome measures of cartilage repair in patients treated by tissue engineering[J]. Tissue Eng, 2005, 11(1): 277-287.
[20] Ba?enková D, Trebu?ová M, Demeterová J, et al. Human chondrocytes, metabolism of articular cartilage, and strategies for application to tissue engineering[J]. Int J Mol Sci, 2023, 24(23): 1-25.
[21] Maity PP, Dutta D, Ganguly S, et al. Isolation and mass spectrometry based hydroxyproline mapping of type Ⅱ collagen derived from Caprahircus ear cartilage[J]. Commun Biol, 2019, 2(4): 1-11.
[22] Pengbo C, Tianlun S, Weilin L, et al. Advanced review on type Ⅱ collagen and peptide: preparation, functional activities and food industry application[J]. Crit Rev Food Sci Nutr, 2023, 7(7): 1-18.
[23] Bae WC, Temple MM, Amiel D, et al. Indentation testing of human cartilage: sensitivity to articular surface degeneration[J]. Arthritis Rheum, 2003, 48(12): 3382-3394.
[24] Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure[J]. Am J Sport Med, 2010, 38(6): 1259-1271.
[25] Weiss-Bilka HE, Meagher MJ, Gargac JA, et al. Mineral deposition and vascular invasion of hydroxyapatite reinforced collagen scaffolds seeded with human adipose-derived stem cells[J]. Biomater Res, 2019, 23(10): 1-13.
[26] Andia I, Maffulli N, Burgos-Alonso N. Stromal vascular fraction technologies and clinical applications[J]. Expert Opin Biol Ther, 2019, 19(12):1289-1305.
[27] Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, et al. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis [J] ? Stem Cell Res Ther, 2019, 10(1): 1-13.
[28] Fang JF, Jia CC, Zheng ZH, et al. Periprostatic implantation of neural differentiated mesenchymal stem cells restores cavernous nerve injurymediated erectile dysfunction[J]. Am J Transl Res, 2016, 8(6): 2549-2561.