Anatomical structures of the matrix channel network for interstitial fluid flow in the human hand

LI Tian-tian ZHAO Jian-ping YANG Chao-zhi CHEN Zhen WANG Nai-li LI Bei CAI Jin WANG Xiao-yu LI Hong-yi

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (3) : 307-314.

PDF(1663 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(1663 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (3) : 307-314. DOI: 10.16098/j.issn.0529-1356.2025.03.008
Anatomy

Anatomical structures of the matrix channel network for interstitial fluid flow in the human hand

  • LI  Tian-tian1  ZHAO  Jian-ping1,2 YANG  Chao-zhi3  CHEN  Zhen4  WANG  Nai-li4  LI Bei1,2  CAI  Jin1,5 WANG  Xiao-yu LI  Hong-yi1* 
Author information +
History +

Abstract

Objective To investigate the anatomical and microscopic structures of interstitial fluid flow channels in the skin tissue of hand dorsum in human cadavers.  Methods  Totally 7 fresh cadavers within 12 hours post-mortem were included. MRI was used to observe the distribution of interstitial fluid flow from the first phalanx of the fingers to the wrist, precisely locating the flow channels. Based on imaging results, histological analyses were conducted to determine the histological characteristics of the flow channels. Furthermore, multi-immunofluorescence and microcomputed tomography (Micro-CT) techniques were employed to analyze the channels, and image post-processing was used to elucidate their anatomical structures at the microscopic level.   Results  After injecting a contrast agent into the first phalanx of ten finger specimens and applying repeated pressure, MRI image revealed centripetal long-range interstitial fluid flow along channels distinct from blood vessels and lymphatic vessels. Histological analysis and Micro-CT further confirmed that the flow primarily occurred within the fibrous connective tissue and adventitia of the skin.   Conclusion  The orderly fibrous connective tissue and adventitia in the skin form the interstitial fluid flow channels in the human hand dorsum skin, named as “stromal membrane channels” in the skin. 

Key words

 Interstitial fluid flow / Fibrous connective tissue / Matrix-membrane channel / Magnetic resonance imaging / Human

Cite this article

Download Citations
LI Tian-tian ZHAO Jian-ping YANG Chao-zhi CHEN Zhen WANG Nai-li LI Bei CAI Jin WANG Xiao-yu LI Hong-yi. Anatomical structures of the matrix channel network for interstitial fluid flow in the human hand[J]. Acta Anatomica Sinica. 2025, 56(3): 307-314 https://doi.org/10.16098/j.issn.0529-1356.2025.03.008

References

 [1] Groeschel  S, Chong WK, Surtees R, et al. Virchow-Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature[J]. Neuroradiology, 2006, 48(10): 745-754.
 [2] Kwee  RM, Kwee TC. Virchow-Robin spaces at MR imaging[J]. Radiographic, 2007, 27(4): 1071-1086.
 [3] Li  HY, Yang CQ, Yin YJ, et al. An extravascular fluid transport system based on structural framework of fibrous connective tissues in human body[J]. Cell Prolif, 2019, 52(5): e12667.
 [4] Li  HY, Yang CQ, Lu KY, et al. A long-distance fluid transport pathway within fibrous connective tissues in patients with ankle edema[J]. Clini Hemorheol Microcirc, 2016, 63(4): 411-421.
 [5] Li  HY, Wang F, Chen M, et al. An acupoint-originated human interstitial fluid circulatory network[J]. Chin Med J(Engl), 2021, 134(19): 2365-2369.
 [6] Li  HY,Li B, Luo WQ, et al. Regulation of interstitial fluid flow in adventitia along vasculature by heartbeat and respiration[J]. iScience, 2024, 27(4): 109407.
 [7] Ueda  HR, Ertürk A, Chunk K, et al. Tissue clearing and its applications in neuroscience[J]. Nat Rev Neurosci, 2020, 21(2): 61-79.
 [8] Wang  XY, Cao WY, Shi JT, et al. Demonstrating hairy and glabrous skin innervation in a 3D pattern using multiple fluorescent staining and tissue clearing approaches[J]. J Vis Exp, 2022(183): 63807.
 [9] Cheng  J, Wang C,Gu YQ. Application of decellularization technology in tissue-engineered blood vessels[J]. Chinese Journal of Biomedical Engineering, 2021,40(1): 118-123.  (in Chinese) 
成津,王聪, 谷涌泉. 脱细胞技术在组织工程血管中的应用进展[J]. 中国生物医学工程学报, 2021,40(1): 118-123.
 [10] Du  ZhB, Liao J, Wang BB, et al. Advantages and prospects of cellderived decellularized extracellular matrix as a scaffold for tissue engineering[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(11): 1291-1298.  (in Chinese) 
杜志坡, 廖婕, 王冰冰, 等. 细胞来源脱细胞外基质用作组织工程支架的优势与展望[J]. 中国修复重建外科杂志, 2024, 38(11): 1291-1298.
 [11] Huang  YH, Yang X, Liu L, et al. Segment anything model for medical images[J]? Med Image Anal, 2024, 92:103061.
 [12] Ronneberger  O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, et al, eds. Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015[M]. Cham: Springer International Publishing, 2015: 234-241.
 [13] Li  HY, Chen M, Yang JF, et al. Fluid flow along venous adventitia in rabbits: is it a potential drainage system complementary to vascular circulations[J]? PLoS One, 2012, 7(7): e41395.
 [14] Zeng  FQ, Pan WR, Wang DG, et al. Anatomy of the lymphatic vessels in the fingers[J]. Chinese Journal of Clinical Anatomy, 2014, 32(5): 548-552.  (in Chinese) 
曾凡强, 潘伟人, 王德广, 等. 手指淋巴管的应用解剖[J]. 中国临床解剖学杂志, 2014, 32(5): 548-552.
 [15] Liu  Sh, Ma JM. Research progress of tertiary lymphatic structures in multiple sclerosis[J]. Acta Anatomica Sinica, 2024, 55(4): 386-392.  (in Chinese) 
刘双, 马坚妹. 多发性硬化三级淋巴结构的研究进展[J]. 解剖学报, 2024, 55(4): 386-392.
 [16] Wang  HJ, Tan YZh, Pober JS. Whole tissue immunostaining reveals lymphatic vessel architecture[J]. Acta Anatomica Sinica, 2016, 47(3): 421-424.  (in Chinese) 
王海杰, 谭玉珍, Pober JS. 整片组织免疫染色显示淋巴管构筑[J]. 解剖学报, 2016, 47(3): 421-424.
PDF(1663 KB)

Accesses

Citation

Detail

Sections
Recommended

/