Effects of dihydroartemisinin on cognitive behavior, β-amyloid and autophagy proteins in brain and retina of 5×FAD mice

HOU Yi-wei YANG Yu WANG Zhi-xin YI Li ZHOU Hang LI Bei-han YAO Hong-bo GAO Han WANG Yu-chun ZHANG Ke-shuang

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (3) : 270-276.

PDF(6986 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(6986 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (3) : 270-276. DOI: 10.16098/j.issn.0529-1356.2025.03.003
Neurobiology

Effects of dihydroartemisinin on cognitive behavior, β-amyloid and autophagy proteins in brain and retina of 5×FAD mice

  • HOU  Yi-wei YANG  Yu2  WANG  Zhi-xin1  YI  Li3  ZHOU  Hang1  LI  Bei-han1  YAO  Hong-bo1*  GAO  Han3  WANG  Yu-chun4  ZHANG  Ke-shuang
Author information +
History +

Abstract

Objective To explore the pathogenesis of Alzheimer’s disease by examining the effects of dihydroartemisinin(DHA) on cognitive behavior, hippocampal, cerebral cortex and retinal cell morphology, β-amyloid(Aβ) and autophagy-related proteins in 5×FAD mice.   Methods  Twenty 5×FAD mice and 5 wild type (WT) mice were selected, all of which were female. The 5×FAD mice were randomly divided into model (M) group, donepezil (D) group, low-dose DHA (DHA-L) group, and high-dose DHA (DHA-H) group. The WT and M groups were not treated, and the D group was given donepezil 0.1 mg/kg per day. DHA-L group and DHA-H group were given 10 mg/kg and 20 mg/kg DHA per day, respectively. Group D, group DHA-L and group DHA-H were given intragastric administration once a day for 3 months. The changes of in cognitive behavior were measured by Morris experiment. HE staining was used to observe the arrangement and morphology of nerve cells in cerebral cortex, hippocampus and retina. The expressions of Aβ protein in cerebral cortex, hippocampus and retina were detected by immunohistochemistry. Western blotting detected the expression of autophagy related proteins (LC3-Ⅰ, LC3-Ⅱ, Beclin-1, P62, β-actin).   Results  The DHA-H group and the D group exhibited more frequent adoption of both linear and trending exploration routes. Compared to the model group, significant differences in the contents of Aβ  in the hippocampal CA1, cerebral cortex S1, and retinal were observed (P<0.0001) in the other four groups. The analysis also showed significant differences in autophagy-associated proteins between the DHA-L,  DHA-H, and model groups (P<0.01).  Conclusion  DHA improves cognitive function and increases the number of nerve cells in mice. It also reduces Aβ content in the cerebral cortex, hippocampus, and retina, along with improving autophagy-associated protein deposition in mice.  

Key words

Alzheimer’s disease / Age-related macular degeneration / Dihydroartemisinin / Autophagy / Western blotting / Mouse

Cite this article

Download Citations
HOU Yi-wei YANG Yu WANG Zhi-xin YI Li ZHOU Hang LI Bei-han YAO Hong-bo GAO Han WANG Yu-chun ZHANG Ke-shuang. Effects of dihydroartemisinin on cognitive behavior, β-amyloid and autophagy proteins in brain and retina of 5×FAD mice[J]. Acta Anatomica Sinica. 2025, 56(3): 270-276 https://doi.org/10.16098/j.issn.0529-1356.2025.03.003

References

 [1] Lang  WY, Zhang ChM, Zhang YD, et al. The mechanism of antioxidant stress effect of deer antler polypeptides in Alzheimer’s disease model mice [J]. Acta Anatomica Sinica, 2022, 53(4): 432-439.(in Chinese) 
郎尉雅, 张春梅, 张羽镝,等. 鹿茸多肽在阿尔茨海默病模型小鼠中抗氧化应激的作用机制[J]. 解剖学报, 2022, 53 (4): 432-439. 
 [2] Wang  QS, Qi ShSh, Zhou P, et al. The effect of dihydroartemisinin on dopaminergic neurons in the substantia nigra of Alzheimer’s disease mice [J]. Acta Anatomica Sinica, 2013, 44(2): 176-181.(in Chinese) 
王琼仨, 戚双双, 周鹏,等.别异烯醇酮对阿尔茨海默病小鼠黑质多巴胺神经元的影响[J]. 解剖学报,2013,44(2):176-181.
 [3] Kaarniranta  K, Blasiak J, Liton P, et al. Autophagy in age-related macular degeneration [J]. Autophagy, 2023,19(02):388-400. 
 [4] Ashok  A, Singh N, Chaudhary S, et al. Retinal degeneration and Alzheimer’s disease: an evolving link [J]. Int J Mol Sci, 2020,21(19):7290.
 [5] Dai  X, Zhang X, Chen W, et al. Dihydroartemisinin: a potential natural anticancer drug [J]. Int J Biol Sci, 2021,17(2):603-622. 
 [6] Du  J, Wang T, Li Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin [J]. Free Radic Biol Med, 2019,131(2):356-369. 
 [7] Li  Y, Chen S, Tan J, et al. Combination therapy with DHA and BMSCs suppressed podocyte injury and attenuated renal fibrosis by modulating the TGF- β 1/Smad pathway in MN mice [J]. Ren Fail, 2023,45(1):2120821. 
 [8] Tan  H, Lv M, Tan X, et al. Sharing of genetic association signals by age-related macular degeneration and Alzheimer’s disease at multiple levels [J]. Mol Neurobiol, 2020,57(11):4488-4499. 
 [9] Zhang  D, Zhang H, He L. Dihydroartemisinin inhibits the proliferation of oral squamous cell carcinoma cells by inducing autophagy [J]. Cancer Prevention and Treatment Research, 2024, 51(1): 22-26.(in Chinese) 
张丹,张昊,何俐.双氢青蒿素通过诱导自噬抑制口腔鳞状细胞癌细胞增殖[J]. 肿瘤防治研究,2024,51(1):22-26.
 [10] Wu  X, Liu Y, Zhang E, et al. Dihydroartemisinin modulates apoptosis and autophagy in multiple myeloma through the P38 MAPK and Wnt/ β -Catenin signaling pathways [J]. Oxidative Med Cell Longev, 2020,15(8):1-12. 
 [11] Li  R, Singh M. Sex differences in cognitive impairment and Alzheimer’s disease [J]. Front Neuroendocrinol, 2014,35(3):385-403. 
 [12] Yang  M, Zhang X, Qiao O, et al. Rosmarinic acid potentiates and detoxifies tacrine in combination for Alzheimer’s disease [J]. Phytomedicine, 2023,109(6):154600. 
 [13] Yan  X, Yu A, Zheng H, et al. Calycosin-7-O-β-D -glucoside Attenuates OGD/R-Induced damage by preventing oxidative stress and neuronal apoptosis via the SIRT1/FOXO1/PGC-1 α Pathway in HT22 Cells [J]. Neural Plast, 2019,12(1):1-11. 
 [14] Bharani KL, Ledreux A, Gilmore A, et al. Serum pro-BDNF levels correlate with phospho-tau staining in Alzheimer’s disease [J]. Neurobiol Aging, 2020,87(3):49-59. 
 [15] Dennis  EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease [J]. Neuropsychol Rev, 2014,24(1):4-62. 
 [16] Esquerda-Canals  G, Montoliu-Gaya L, Güell-Bosch J, et al. Mouse models of Alzheimer’s disease [J]. J Alzheimer’s Dis, 2017,57(4):1171-1183. 
 [17] Asho k A, Singh N, Chaudhary S, et al. Retinal degeneration and Alzheimer’s disease: an evolving link [J]. Int J Mol Sci, 2020,21(19):7290. 
 [18] Ano  Y, Ikado K, Uchida K, et al. Amyloid β-induced mesenteric inflammation in an Alzheimer’s disease transgenic mouse model [J]. Curr Alzheimer Res, 2020,17(1):52-59. 
 [19] Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration. [J]. Med Clin N Am, 2021,105(3):473-491. 
 [20] Zhao  Y, Bhattacharjee S, Jones BM, et al. Beta-amyloid precursor protein (βAPP) processing in Alzheimer’s disease (AD) and age-related macular degeneration (AMD) [J]. Mol Neurobiol, 2015,52(1):533-544.
 [21] Chakravarthy  U, Peto T. Current perspective on age-related macular degeneration [J]. JAMA, 2020,324(8):794. 
 [22] Cheng  J, Dong Y, Ma J, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology [J].  Sci Adv, 2021,7(35): abe3600. 
 [23] Unger  MS, Li E, Scharnagl L, et al. CD8+ T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapserelated gene expression in APP-PS1 transgenic mice [J]. Brain Behav Immun, 2020,89:67-86. 
 [24] Ye  X, Chen L, Wang H, et al. Genetic inhibition of PDK1 robustly reduces plaque deposition and ameliorates gliosis in the 5×FAD mouse model of Alzheimer’s disease [J]. Neuropathol Appl Neurobiol, 2022,48(7): e12839.
 [25] Oakley  H, Cole SL, Logan S, et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation [J]. J Neurosci, 2006,26(40):10129-10140. 
 [26] Neuman  KM, Molina-Campos E, Musial TF, et al. Evidence for Alzheimer’s disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons [J]. Brain Struct Funct, 2015,220(6):3143-3165. 
 [27] Park  SW, Im S, Jun HO, et al. Dry age-related macular degeneration like pathology in aged 5XFAD mice: ultrastructure and microarray analysis [J]. Oncotarget, 2017,8(25):40006-40018. 
 [28] Chen  M, Wu Q, Zhu Z, et al. Selenium-enriched foods and their ingredients: as intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer’s disease [J]. Crit Rev Food Sci Nutr, 2024,64(19):6672-6685. 
 [29] Sadick  JS, O’Dea MR, Hasel P, et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease [J]. Neuron, 2022,110(11):1788-1805.e10.
 [30] Tang  T, Xia Q, Xi M. Dihydroartemisinin and its anticancer activity against endometrial carcinoma and cervical cancer: involvement of apoptosis, autophagy and transferrin receptor [J]. Singap Med J, 2021,62(2):96-103. 
 [31] Shi  X, Wang L, Ren L, et al. Dihydroartemisinin, an antimalarial drug, induces absent in melanoma 2 inflammasome activation and autophagy in human hepatocellular carcinoma HepG2215 cells [J]. Phytother Res, 2019,33(5):1413-1425. 
 [32] Zhao  Y, Long Z, Ding Y, et al. Dihydroartemisinin ameliorates learning and memory in Alzheimer’s disease through promoting autophagosome-lysosome fusion and autolysosomal degradation for Aβ clearance [J]. Front Aging Neurosci, 2020,12:47. 

PDF(6986 KB)

Accesses

Citation

Detail

Sections
Recommended

/