[1] Liu Ch, Li H, Wang DW. Effects of dendrobium huoshanense polysaccharide on oxidative stress and inflammation in brain tissue of mice with Parkinson’s disease[J]. Journal of Jilin University (Medicine Edition), 2023, 49(1): 110-115. (in Chinese)
刘川, 李环, 王大伟. 霍山石斛多糖对帕金森病模型小鼠脑组织氧化应激和炎症反应的影响[J]. 吉林大学学报(医学版), 2023,49(1):110-115.
[2] Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review[J]. JAMA, 2020,323(6):548-560.
[3] Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology[J]. Clin Geriatr Med, 2020,36(1):1-12.
[4] Azar YO, Badawi GA, Zaki HF, et al. Agmatine-mediated inhibition of NMDA receptor expression and amelioration of dyskinesia via activation of Nrf2 and suppression of HMGB1/RAGE/TLR4/MYD88/NFκB signaling cascade in rotenone lesioned rats[J]. Life Sci, 2022,311(Pt A):121049.
[5] Huang B, HU G, Zong X, et al. α-Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson’s disease rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway[J]. Int Immunopharmacol, 2023,115:109698.
[6] Casta-edaAcosta J, Fischer NH, Vargas D. Biomimetic transformations of parthenolide[J]. J Nat Prod, 1993,56(1):90-98.
[7] Li X, Zhang Y, Wang Y, et al. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinson’s disease[J]. Front Pharmacol, 2017,8:634.
[8] Cai L, Gong Q, Qi L, et al. ACT001 attenuates microgliamediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway[J]. Cell Commun Signal, 2022,20(1):56.
[9] Liu Q, Guo X, Huang Z, et al. Antineuroinflammatory effects of dimethylaminomylide (DMAMCL, i.e., ACT001) are associated with attenuating the NLRP3 inammasome in MPTPinduced Parkinson disease in mice[J]. Behav Brain Res, 2020,383:112539.
[10] Liu Q, Zhang S, Zhu D, et al. The parthenolide derivative ACT001 synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson’s disease in mice[J]. Behav Brain Res, 2020,379:112337.
[11] Innos J, Hickey MA. Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics[J]. Chem Res Toxicol, 2021,34(5):1223-1239.
[12] Liu QQ. Improvement of new crystallization nanoparticles and Sesquiterpenelactones compound ACT001 on MPTP induced Parkinson’s disease in mice [D]. Tianjin:Nankai University, 2020. (in Chinese)
刘倩倩. 新型纳米结晶载体及倍半萜内酯类化合物ACT001对MPTP诱导的帕金森病小鼠的改善作用[D]. 天津:南开大学, 2020.
[13] He JY, Li DD, Wen Q, et al. Synergistic effects of lipopolysaccharide and rotenone on dopamine neuronal damage in rats[J]. CNS Neurosci Ther, 2023,29(8):2281-2291.
[14] Lubrich C, Giesler P, Kipp M. Motor behavioral deficits in the Cuprizone model: validity of the rotarod test paradigm[J]. Int J Mol Sci, 2022,23(19):11342.
[15] Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease[J]. Neurotox Res, 2007,11(3-4):151-167.
[16] Mustapha M, Mat TC. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies[J]. Bosn J Basic Med Sci, 2021,21(4):422-433.
[17] Cornelissen T, Vilain S, Vints K, et al. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila[J]. Elife, 2018,7: e35878.
[18] Xu L, Li YY, Zhang JJ, et al. Neuroprotective effect and mechanism of hirsutine on 6- hydroxydopmaine induced Parkinson’s disease model in rat[J]. Journal of Shengyang Pharmaceutical Universitys, 2023, 40(5): 613-619. (in Chinese)
徐利, 李莹莹, 张锦军, 等. 毛钩藤碱对6-羟基多巴胺诱导的帕金森病模型大鼠神经保护作用及机制研究[J]. 沈阳药科大学学报, 2023,40(5):613-619.
[19] Cui TT, Cao JL, Ouyang JF, et al. Effect and Dadingfengzhu Pill on the activation of microglia cells in the substantia nigra and TLR4/My88/NF-KB signaling pathway in Parkinson’s disease model mice. [J]. Journal of traditional Chinese medicine,2023,64(9):930-938. (in Chinese)
崔拓拓, 曹俊岭, 欧阳竞锋, 等. 大定风珠对帕金森病模型小鼠脑黑质小胶质细胞活化及TLR4/MyD88/NF-κB信号通路的影响[J]. 中医杂志, 2023,64(9):930-938.
[20] Xu HB, Luo Y. Triggering receptor expressed on myeloid cell-2 modulating the polarization of mouse M2 microglia with oxygen-glucose deprivation/re-oxygenation model. [J]. Acta Anatomica Sinica,2021,52(3):329-336. (in Chinese)
胥虹贝, 罗勇. 髓样细胞激活受体2调控氧糖剥夺/复氧模型小鼠小胶质细胞向M2型极化[J]. 解剖学报, 2021,52(3):329-336.
[21] Yu ZhCh, Zhang XY, DU JJ, et al. Monocarboxylate transporter 1 enhancing the expression if inducible nitric oxide synthase within M1 phenotype microglia under low-glucose condition. [J]. Acta Anatomica Sinica,2022,53(3):288-294. (in Chinese)
于哲成, 张晓艳, 杜娟娟, 等. 单羧酸转运蛋白1在低糖条件下促进M1型小胶质细胞中诱导型一氧化氮合酶表达[J]. 解剖学报, 2022,53(3):288-294.
[22] Yang Y, Deng P, Si Y, et al. Acupuncture at GV20 and ST36 improves the recovery of behavioral activity in rats subjected to cerebral ischemia/reperfusion injury[J]. Front Behav Neurosci, 2022,16:909512.
[23] Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior[J]. Methods Mol Biol,
2019,1916:99-103.
[24] Chen GE, Deng YF, Deng WR, et al. Investigation on the protective effect of Arisaema Cum Bile on MPTP-induced Parkinson’s disease model mice based on PKA signaling pathway[J]. Chinese Pharmacy, 2023, 34(15): 1809-1814. (in Chinese)
陈桂恩, 邓雅方, 邓婉柔, 等. 基于PKA信号通路探讨胆南星对MPTP诱导帕金森病模型小鼠的保护作用[J]. 中国药房, 2023,34(15):1809-1814.
[25] Cao ZhK. Pathological changes and regulation of motor and non-motor symptoms of zona incerta neurons in Parkinson’s disease model mice [D]. Qingdao:Qingdao University, 2023. (in Chinese)
曹中凯. 未定带神经元在帕金森病模型小鼠中的病理改变及对运动和非运动症状的调控[D]. 青岛:青岛大学, 2023.
[26] Lawrence T. The nuclear factor NF-kappa B pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009,1(6): a001651.