Post-translational modification of integrins and its relationship with tumor occurrence and development

YANG Jia WU Xiao BO Jin-suo CHEN Yi-ning ZHNG Hong-quan WEI Xiao-fan

Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (1) : 58-65.

PDF(1148 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(1148 KB)
Acta Anatomica Sinica ›› 2025, Vol. 56 ›› Issue (1) : 58-65. DOI: 10.16098/j.issn.0529-1356.2025.01.008
Review

Post-translational modification of integrins and its relationship with tumor occurrence and development

  • YANG Jia WU Xiao BO Jin-suo CHEN Yi-ning ZHANG Hong-quan WEI Xiao-fan*
Author information +
History +

Abstract

 Integrins are transmembrane receptors that can coordinate signal transduction between cells and extracellular matrix or between cells. The abnormal function of integrins is one of the recognized mechanisms of tumor development. As an important regulatory mode, post-translational modification can change the conformation and physicochemical properties of proteins, thus affecting their activities, stability and functions. After the modification of the integrin, such as glycosylation and methylation, the corresponding signal transduction pathway changes, and then affects cell adhesion, migration, differentiation and other life activities, involving in diverse physiology and pathological processes. Post-translational modifications of integrins are abundant in tumor progression and play a key role in regulating the growth, metastasis and drug resistance of different tumor cells. In this review, the structure and function, post-translational modification of integrins, and their relationship with occurrence and development of tumors will be discussed, in order to provide more explorable targets for the treatment of cancer.

Key words

 Integrin
/ Post-translational modification / Tumor progression / Cell migration

Cite this article

Download Citations
YANG Jia WU Xiao BO Jin-suo CHEN Yi-ning ZHNG Hong-quan WEI Xiao-fan. Post-translational modification of integrins and its relationship with tumor occurrence and development[J]. Acta Anatomica Sinica. 2025, 56(1): 58-65 https://doi.org/10.16098/j.issn.0529-1356.2025.01.008

References

[1]Fagerholm SC. Integrins in health and disease[J]. N Engl J Med, 2022, 387(16):1519-1521.
[2]Slack RJ, Macdonald SJF, Roper JA, et al. Emerging therapeutic opportunities for integrin inhibitors[J]. Nat Rev Drug Discov, 2022, 21(1):60-78.
[3]Zheng YZh, Huang MW, Chen JF. The influence of integrin activity regulation on its biological function[J]. Chemistry of life, 2023, 43(7):967-974.(in Chinese)
郑韫哲,黄梦汶,陈剑峰. 整合素的活性调控及其功能[J].生命的化学, 2023, 43(7):967-974.
[4]Wang H, Chen H, Jiang Z, et al. Integrin subunit alpha V promotes growth, migration, and invasion of gastric cancer cells[J]. Pathol Res Pract, 2019, 215(9):152531.
[5]Pang X, He X, Qiu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Transduct Target Ther, 2023, 8(1):1.
[6]Park EJ, Yuki Y, Kiyono H, et al. Structural basis of blocking integrin activation and deactivation for anti-inflammation[J]. J Biomed Sci, 2015, 22(1):51.
[7]Yang M, Chen X, Zhang ShW, et al. Research progress of biological function in integrin-interacting protein kindlin family[J]. Acta Anatomica Sinica, 2014, 45(6):865-869.(in Chinese)
杨玫,陈曦,张水文,等.整合素相互作用蛋白Kindlin家族的生物学功能研究进展[J].解剖学报, 2014, 45(6):865-869.
[8]Aretz J, Aziz M, Strohmeyer N, et al. Talin and kindlin use integrin tail allostery and direct binding to activate integrins[J]. Nat Struct Mol Biol, 2023, 30(12):1913-1924.
[9]Hu Y, Li H, Zhang C, et al. DNA-based ForceChrono probes for deciphering single-molecule force dynamics in living cells[J]. Cell, 2024, 187(13):3445-3459.e15.
[10]Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: a mutually dependent relationship[J]. Science, 2023, 379(6633): eabp8964.
[11]Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance[J]. Cancer Cell, 2019, 35(3):347-367.
[12]Liu J, Lu F, Ithychanda SS, et al. A mechanism of platelet integrin αⅡbβ3 outside-in signaling through a novel integrin αⅡb subunit-filamin-actin linkage[J]. Blood, 2023, 141(21):2629-2641.
[13]Li J, Jo MH, Yan J, et al. Ligand binding initiates single-molecule integrin conformational activation[J]. Cell, 2024, 187(12):2990-3005.e17.
[14]Wang H, Yang L, Liu M, et al. Protein post-translational modifications in the regulation of cancer hallmarks[J]. Cancer Gene Ther, 2023, 30(4):529-547.
[15]Lin Y, Lubman DM. The role of N-glycosylation in cancer[J]. Acta Pharm Sin B, 2024, 14(3):1098-1110.
[16]Hang Q, Isaji T, Hou S, et al. A key regulator of cell adhesion: identification and characterization of important n-glycosylation sites on integrin α5 for cell migration[J]. Mol Cell Biol, 2017, 37(9): e00558-16.
[17]Cao L, Wu Y, Wang X, et al. Role of site-specific glycosylation in the I-like domain of integrin β1 in small extracellular vesicle-mediated malignant behavior and fak activation[J]. Int J Mol Sci, 2021, 22(4):1770.
[18]Magalhães A, Duarte HO, Reis CA. The role of O-glycosylation in human disease[J]. Mol Aspects Med, 2021, 79:100964.
[19]Tsuboi S, Hatakeyama S, Ohyama C, et al. Two opposing roles of O-glycans in tumor metastasis[J]. Trends Mol Med, 2012, 18(4):224-232.
[20]Lee SH, Hatakeyama S, Yu SY, et al. Core3 O-glycan synthase suppresses tumor formation and metastasis of prostate carcinoma PC3 and LNCaP cells through down-regulation of alpha2beta1 integrin complex[J]. J Biol Chem, 2009, 284(25):17157-17169.
[21]Wu Q, Schapira M, Arrowsmith CH, et al. Protein arginine methylation: from enigmatic functions to therapeutic targeting[J]. Nat Rev Drug Discov, 2021, 20(7):509-530.
[22]Schonfeld M, Villar MT, Artigues A, et al. Arginine methylation of integrin alpha-4 prevents fibrosis development in alcohol-associated liver disease[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(1):39-59.
[23]Marsden AJ, Riley DRJ, Barry A, et al. Inhibition of arginine methylation impairs platelet function[J]. ACS Pharmacol Transl Sci, 2021, 4(5):1567-1577.
[24]Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment[J]. Nat Med, 2014, 20(11):1242-1253.
[25]Tang T, Chen H, Hu L, et al. TIMP1 protects against blood-brain barrier disruption after subarachnoid haemorrhage by inhibiting ubiquitination of astrocytic β1-integrin[J]. Stroke Vasc Neurol, 2024:svn-2023-002956.
[26]Lobert VH, Brech A, Pedersen NM, et al. Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes[J]. Dev Cell, 2010, 19(1):148-159.
[27]Yang N, Yu F, Shao G, et al. The E3 ubiquitin ligase c-Cbl mediates integrin β1 ubiquitination during dilated cardiomyopathy [J]. Biochem Biophys Res Commun, 2016, 479(4): 728-735.
[28]Bilkei-Gorzo O, Heunis T, Marín-Rubio JL, et al. The E3 ubiquitin ligase RNF115 regulates phagosome maturation and host response to bacterial infection[J]. EMBO J, 2022, 41(23): e108970.
[29]Dikeman DA, Rivera Rosado LA, Horn TA, et al. Alpha4 beta1-integrin regulates directionally persistent cell migration in response to shear flow stimulation[J]. Am J Physiol Cell Physiol, 2008, 295(1):C151-159.
[30]Saito N, Toyoda M, Ono M, et al. Regulation of blood pressure and phosphorylation of β1-integrin in renal tissue in a rat model of diabetic nephropathy[J]. Tokai J Exp Clin Med, 2021, 46(4):172-179.
[31]Durrant TN, van den Bosch MT, Hers I. Integrin αⅡbβ3 outside-in signaling[J]. Blood, 2017, 130(14):1607-1619.
[32]Grimm TM, Dierdorf NI, Betz K, et al. PPM1F controls integrin activity via a conserved phospho-switch[J]. J Cell Biol, 2020, 219(12): e202001057.
[33]Bibli SI, Hu J, Looso M, et al. Mapping the endothelial cell S-sulfhydrome highlights the crucial role of integrin sulfhydration in vascular function[J]. Circulation, 2021, 143(9):935-948.
[34]Zhai Y, Chen L, Zhu P, et al. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity[J]. Science, 2023, 379(6637): eabg2482.
[35]Yao Q, Cui Q, Liu J, et al. Free fatty acids stabilize integrin β1via S-nitrosylation to promote monocyte-endothelial adhesion[J]. J Biol Chem, 2023, 299(1):102765.
[36]Pochec E, Janik M, Hoja-Łukowicz D, et al. Expression of integrins α3β1 and α5β1 and GlcNAc β1,6 glycan branching influences metastatic melanoma cell migration on fibronectin[J]. Eur J Cell Biol, 2013, 92(12):355-362.
[37]Zhao Y, Nakagawa T, Itoh S, et al. N-acetylglucosaminyltransferase Ⅲ antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration[J]. J Biol Chem, 2006, 281(43):32122-32130.
[38]Shen Z, Ye Y, Kauttu T, et al. Novel focal adhesion protein kindlin-2 promotes the invasion of gastric cancer cells through phosphorylation of integrin β1 and β3[J]. J Surg Oncol, 2013, 108(2):106-112.
[39]Yu S, Fan J, Liu L, et al. Caveolin-1 up-regulates integrin α2,6-sialylation to promote integrin α5β1-dependent hepatocarcinoma cell adhesion[J]. FEBS Lett, 2013, 587(6):782-787.
[40]Liu CH, Hu RH, Huang MJ, et al. C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity[J]. PLoS One, 2014, 9(8): e94995.
[41]Zhou Y, Fukuda T, Hang Q, et al. Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation[J]. Sci Rep, 2017, 7(1):11563.
[42]Lee M, Lee HJ, Seo WD, et al. Sialylation of integrin beta1 is involved in radiation-induced adhesion and migration in human colon cancer cells[J]. Int J Radiat Oncol Biol Phys, 2010, 76(5):1528-1536.
[43]Craig DH, Gayer CP, Schaubert KL, et al. Increased extracellular pressure enhances cancer cell integrin-binding affinity through phosphorylation of beta1-integrin at threonine 788/789[J]. Am J Physiol Cell Physiol, 2009, 296(1):C193-204.
[44]Chen CH, Wang SH, Liu CH, et al. β-1,4-Galactosyltransferase Ⅲ suppresses β1 integrin-mediated invasive phenotypes and negatively correlates with metastasis in colorectal cancer[J]. Carcinogenesis, 2014, 35(6):1258-1266.
[45]Zhang W, Pan R, Lu M, et al. Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway[J]. Oncogene, 2021, 40(45):6369-6380.
[46]Zhou J, Yang W, Hu Y, et al. Site-specific fucosylation analysis identifying glycoproteins associated with aggressive prostate cancer cell lines using tandem affinity enrichments of intact glycopeptides followed by mass spectrometry[J]. Anal Chem, 2017, 89(14):7623-7630.
[47]Zhao G, Gong L, Su D, et al. Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin β1[J]. J Clin Invest, 2019, 129(3):972-987.
[48]Zhang C, Deng X, Qiu L, et al. Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation [J]. J Cancer, 2018, 9(15): 2666-2677.
[49]Meng X, Liu P, Wu Y, et al. Integrin beta 4 (ITGB4) and its tyrosine-1510 phosphorylation promote pancreatic tumorigenesis and regulate the MEK1-ERK1/2 signaling pathway[J]. Bosn J Basic Med Sci, 2020, 20(1):106-116.
[50]Yuan Y, Wu L, Shen S, et al. Effect of alpha 2,6 sialylation on integrin-mediated adhesion of breast cancer cells to fibronectin and collagen IV[J]. Life Sci, 2016, 149:138-145.
[51]Li M, Ye J, Xia Y, et al. METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4[J]. Leukemia, 2022, 36(11):2586-2595.
[52]Singh V, Ram M, Kumar R, et al. Phosphorylation: implications in cancer[J]. Protein J, 2017, 36(1):1-6.
[53]Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue[J]. Nat Rev Drug Discov, 2022, 21(3):181-200.
PDF(1148 KB)

Accesses

Citation

Detail

Sections
Recommended

/