Research progress of the tertiary lymphoid structure in multiple sclerosis

LIU Shuang MA Jian-mei

Acta Anatomica Sinica ›› 2024, Vol. 55 ›› Issue (4) : 386-392.

PDF(1741 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(1741 KB)
Acta Anatomica Sinica ›› 2024, Vol. 55 ›› Issue (4) : 386-392. DOI: 10.16098/j.issn.0529-1356.2024.04.002
Review

Research progress of the tertiary lymphoid structure in multiple sclerosis

  • LIU Shuang MA Jian-mei*
Author information +
History +

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system(CNS), which is characterized by infiltration of immune cells, glia activation, demyelination and neurodegeneration. With the progression of MS, the peripheric infiltrated immune cells promote lymphocytes to locate in parenchyma or meninges adjacent to active lesions by secreting cytokines, such as C-X-C motif chemokine ligand (CXCL)13, CXCL12 and tumor necrosis factor-α(TNF-α), contributing to the formation of tertiary lymphoid structure (TLS). TLS formation in the CNS can directly trigger immune reaction independent from peripheral immune system, leading to the differentiation of pathogenic lymphocytes, the activation of microglia and astrocyte, and the recruitment of additional peripheral immune cells into the CNS by secreting proinflammatory cytokines and chemokines. The immune reaction in CNS caused by TLS leads to aggravated neuroinflammation and pathological changes, even irreversible neuron damage, which is thought to be responsible the progression of MS. The formation, distribution, tissue structure, and the mechanism of formation and distribution of the TLS in MS are reviewed in this article, which may contribute to potential therapeutic approaches for chronic progressive MS. 

Key words

 Multiple sclerosis / Tertiary lymphoid structure / Lymphocyte / Central nervous system
 


Cite this article

Download Citations
LIU Shuang MA Jian-mei. Research progress of the tertiary lymphoid structure in multiple sclerosis[J]. Acta Anatomica Sinica. 2024, 55(4): 386-392 https://doi.org/10.16098/j.issn.0529-1356.2024.04.002

References

[1]Kuhlmann T, Moccia M, Coetzee T, et al. Multiple sclerosis progression: time for a new mechanism-driven framework [J]. Lancet Neurol, 2023, 22(1): 78-88.
[2]Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis [J]. Brain Pathol, 2004, 14(2): 164-174.
[3]Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology [J]. Brain, 2007, 130(Pt 4): 10891104.
[4]Serafini B, Rosicarelli B, Franciotta D, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain [J]. J Exp Med, 2007, 204(12): 2899-2912.
[5]Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains [J]. Brain, 2009,132(Pt 5): 1175-1189.
[6]Magliozzi R, Howell OW, Reeves C, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis [J]. Ann Neurol, 2010, 68(4): 477-493.
[7]Serafini B, Severa M, Columba-Cabezas S, et al. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation [J]. J Neuropathol Exp Neurol, 2010, 69(7): 677-693.
[8]Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis [J]. Brain,2011, 134(Pt 9): 2755-2771.
[9]Magliozzi R, Serafini B, Rosicarelli B, et al. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis [J]. J Neuropathol Exp Neurol, 2013, 72(1): 29-41.
[10]Howell OW, Schulz-Trieglaff EK, Carassiti D, et al. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space [J]. Neuropathol Appl Neurobiol, 2015, 41(6): 798-813.
[11]Serafini B, Rosicarelli B, Veroni C, et al. RORγt expression and lymphoid neogenesis in the brain of patients with secondary progressive multiple sclerosis [J]. J Neuropathol Exp Neurol,2016, 75(9): 877-888.
[12]Bell L, Lenhart A, Rosenwald A, et al. Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells [J]. Front Immunol, 2020, 10: 3090.
[13]Reali C, Magliozzi R, Roncaroli F, et al. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis [J]. Brain Pathol, 2020, 30(4): 779-793.
[14]Bevan RJ, Evans R, Griffiths L, et al. Meningeal inflammation and cortical demyelination in acute multiple sclerosis [J]. Ann Neurol, 2018, 84(6): 829-842.
[15]Kee R, Naughton M, McDonnell GV, et al. A review of compartmentalised inflammation and tertiary lymphoid structures in the pathophysiology of multiple sclerosis [J]. Biomedicines,  2022,  10(10): 2604.
[16]Sato Y, Silina K, van den Broek M, et al. The roles of tertiary lymphoid structures in chronic diseases [J]. Nat Rev Nephrol, 2023,  19(8): 525-537.
[17]Schumacher TN, Thommen DS. Tertiary lymphoid structures in Cancer [J]. Science,  2022,  375(6576): eabf9419.
[18]Victora GD, Nussenzweig MC. Germinal centers [J]. Annu Rev Immunol, 2022,  40: 413-442.
[19]Barone F, Nayar S, Campos J, et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs [J]. Proc Natl Acad Sci USA. 2015,  112(35): 11024-11029.
[20]Schropp V, Rohde J, Rovituso DM, et al. Contribution of LTi and TH17 cells to B cell aggregate formation in the central nervous system in a mouse model of multiple sclerosis [J]. J Neuroinflammation, 2019,  16(1): 111.
[21]Fitzgerald DC, Zhang GX, El-Behi M, et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells [J]. Nat Immunol, 2007,  8(12): 1372-1379.
[22]Vanderkerken M, Baptista AP, De Giovanni M, et al. ILC3s control splenic cDC homeostasis via lymphotoxin signaling [J]. J Exp Med,  2021,  218(5): e20190835.
[23]Molnarfi N, Schulze-Topphoff U, Weber MS, et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies [J]. J Exp Med,  2013,  210(13): 2921-2937.
[24]Lochner M, Ohnmacht C, Presley L, et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells [J]. J Exp Med, 2011,  208(1): 125-134.
[25]Pikor NB, Astarita JL, Summers-Deluca L, et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate Neuroinflammation [J]. Immunity,  2015,  43(6): 1160-1173.
[26]Wieseler-Frank J, Jekich BM, Mahoney JH, et al. A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus [J]. Brain Behav Immun, 2007,  21(5): 711-718.
[27]Cui ZhJ, Liu F, Zhao KB, et al. Brain barrier structure of APPSWE Tg2576 mice [J]. Acta Anatomica Sinica, 2018, 49(5): 571-578. (in Chinese) 
崔占军,刘芳,赵凯冰,等. APPSWE Tg2576小鼠脑屏障结构[J]. 解剖学报, 2018, 49(5): 571-578.
[28]Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015,  523(7560): 337-341.
[29]Da Mesquita S, Papadopoulos Z, Dykstra T, et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy [J]. Nature, 2021,  593(7858): 255-260.
[30]Rodríguez Murúa S, Farez MF, Quintana FJ. The immune response in multiple sclerosis [J]. Annu Rev Pathol,  2022,  17: 121-139.
[31]Leech S, Kirk J, Plumb J, and McQuaid S. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis [J]. Neuropathol Appl Neurobiol,  2007,  33(1): 86-98.
[32]Zivadinov R, Ramasamy DP, Vaneckova M, et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study [J]. Mult Scler,  2017,  23(10): 1336-1345.
[33]Magliozzi R, Howell OW, Nicholas R, et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis [J]. Ann Neurol, 2018,  83(4): 739-755.
[34]DeLuca J, Chiaravalloti ND, Sandroff BM. Treatment and management of cognitive dysfunction in patients with multiple sclerosis [J]. Nat Rev Neurol,  2020,  16(6): 319-332.
[35]Hauser SL, Bar-Or A, Weber MS, et al. Association of higher ocrelizumab exposure with reduced disability progression in multiple sclerosis [J]. Neurol Neuroimmunol Neuroinflamm, 2023,  10(2): e200094.
[36]Starke L, Millward JM, Prinz C, et al. First in vivo fluorine-19 magnetic resonance imaging of the multiple sclerosis drug Siponimod [J]. Theranostics, 2023,  13(4): 1217-1234.
[37]Brand RM, Diddens J, Friedrich V, et al. Siponimod inhibits the formation of meningeal ectopic lymphoid tissue in experimental autoimmune encephalomyelitis [J]. Neurol Neuroimmunol Neuroinflamm,  2021,  9(1): e1117.
[38]Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis [J]. N Engl J Med, 2019,  380(25): 2406-2417.
[39]Dolgin E. BTK blockers make headway in multiple sclerosis [J]. Nat Biotechnol, 2021,  39(1): 3-5.
[40]Bhargava P, Kim S, Reyes AA, et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition [J]. Brain, 2021, 144(5): 1396-1408.
 

PDF(1741 KB)

Accesses

Citation

Detail

Sections
Recommended

/