Roles of hepatic Dishevelled/Egl-10/pleckstrin domain-containing protein 5/mammalian target of rapamycin complex 1 signaling axis on the development of non-alcoholic fatty liver disease

XU Lin XIONG Xi-wen LI Zun HUANG Rong MA Hong-hui MA Jie

Acta Anatomica Sinica ›› 2024, Vol. 55 ›› Issue (3) : 295-301.

PDF(4624 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(4624 KB)
Acta Anatomica Sinica ›› 2024, Vol. 55 ›› Issue (3) : 295-301. DOI: 10.16098/j.issn.0529-1356.2024.03.006
Cell and Molecules Biology

Roles of hepatic Dishevelled/Egl-10/pleckstrin domain-containing protein 5/mammalian target of rapamycin complex 1 signaling axis on the development of non-alcoholic fatty liver disease

  • XU Lin1,4* XIONG Xi-wen2,4 LI Zun3,4 HUANG Rong3,4 MA Hong-hui3,4 MA Jie2,4
Author information +
History +

Abstract

Objective To investigate the effect of hepatic Dishevelled/Egl-10/pleckstrin domain-containing protein 5(DEPDC5)/mammalian target of rapamycin complex 1(mTORC1) on nonalcoholic fatty liver disease by establishing a high-fat diet feeding model of Depdc5 gene hepatocyte specific knockout mice. Methods Depdc5flox/flox mice were constructed and mated with Alumin-Cre mice to obtain Depdc5flox/flox;Alb-Cre mice (LKO), Depdc5flox/flox mice were as control (Loxp). Totally 32 male mice aged 2-3 months were randomly divided into high-fat-diet LKO group, high-fat-diet Loxp control group, high-fat-diet + rapamycin LKO group, and high-fat-diet + rapamycin Loxp control group, with 8 mice in each group. Liver serum biochemistry, lipid content, protein, mRNA and pathological sections were detected; Graphpad prism 8 software was used for statistical analysis. Results  High-fat-diet induced liver steatosis in Loxp mice, while LKO mice were protected from steatosis but had aggravated liver injury. Rapamycin treatment attenuated the hyperactivation of mTORC1 pathway caused by Depdc5 knockout, alleviated the liver steatosis in Loxp mice and liver injury in LKO mice. Conclusion  Deletion of Depdc5 gene protects mice from high-fat-diet induced liver steatosis and rapamycin treatment might be used to improve liver injury caused by DEPDC5 loss of function.

Key words

Dishevelled/Egl-10/pleckstrin containing protein 5
/ Mammalian target of rapamycin complex 1 / High-fat-diet / Rapamycin / Nonalcoholic fatty liver / Western blotting / Mouse

Cite this article

Download Citations
XU Lin XIONG Xi-wen LI Zun HUANG Rong MA Hong-hui MA Jie. Roles of hepatic Dishevelled/Egl-10/pleckstrin domain-containing protein 5/mammalian target of rapamycin complex 1 signaling axis on the development of non-alcoholic fatty liver disease[J]. Acta Anatomica Sinica. 2024, 55(3): 295-301 https://doi.org/10.16098/j.issn.0529-1356.2024.03.006

References

[1] Francque SM, Marchesini G, Kautz A, et al. Non-alcoholic fatty liver disease: a patientguideline[J]. JHEP Rep, 2021, 3(5):100322.
[2] Guo YN, Fan Q, Zhang WG. Research progress on receptor interacting protein kinase regulated necroptosis in nonalcoholic fatty liver disease[J].Acta Anatomica Sinica, 2020,51(4):626-630. (in Chinese)
郭翼宁,范祺,张卫光.受体相互作用蛋白激酶调控非酒精性脂肪肝中细胞程序性坏死的研究进展[J].解剖学报, 2020, 51(4): 626-630.
[3] Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of mTORC1 and mTORC2[J]. Physiol Rev, 2021, 101(3):1371-1426.
[4] Consonni SV, Maurice MM, Bos JL. DEP domains: structurally similar but functionallydifferent[J]. Nat Rev Mol Cell Biol, 2014, 15(5):357-362.
[5] Chen T, Giri M, Xia Z, et al. Genetic and epigenetic mechanisms of epilepsy: a review[J]. Neuropsychiatr Dis Treat, 2017, 13(13):1841-1859.
[6] Pang Y, Xie F, Cao H, et al. Mutational inactivation of mTORC1 repressor gene DEPDC5 in human gastrointestinal stromal tumors[J]. Proc Natl Acad Sci USA, 2019, 116(45): 22746-22753.
[7] Byrne CD, Targher G. NAFLD: a multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): S47-64.
[8] Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7):908-922.
[9] Weisend CM, Kundert JA, Suvorova ES, et al. Cre activity in fetal albCre mouse hepatocytes: utility for developmental studies[J]. Genesis, 2009, 47(12):789-792.
[10] Saxton RA, Sabatini DM. mTOR Signaling in Growth Metabolism and Disease[J]. Cell, 2017, 169(2):361-371.
[11] Zhang XG, Ma J, Wang QZh, et al. Gut epithelial Depdc5/mTOR signaling axis regulates mouse intestinal epithelial homeostasis[J].Basic and Clinical Medicine, 2022, 42(8):1213-1219. (in Chinese)
张新格,马洁,王庆志. 肠上皮Depdc5/mTORC1信号轴调控小鼠小肠上皮稳态[J].基础医学与临床, 2022, 42(8):1213-1219.
[12] Wolfson RL, Chantranupong L, Wyant GA, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1[J]. Nature, 2017, 543(7645): 438-442.
[13] Cho CS, Kowalsky AH, Namkoong S, et al. Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury[J]. Cell Discov, 2019, 5(60):1-18.
[14] Shen K, Huang RK, Brignole EJ, et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes[J]. Nature, 2018, 556(7699):64-69.
[15] Iffland PH, Baybis M, Barnes AE, et al. DEPDC5 and NPRL3 modulate cell size, filopodial outgrowth, and localization of mTOR in neural progenitor cells and neurons[J]. Neurobiol Dis, 2018, 114:184-193.
[16] Xu L, Zhang X, Xin Y, et al. Depdc5 deficiency exacerbates alcoholinduced hepatic steatosis via suppression of PPARalpha pathway[J]. Cell Death Dis, 2021, 12(7):710.
[17] Ghomlaghi M, Hart A, Hoang N, et al. Feedback, crosstalk and competition: ingredients for emergent nonlinear behaviour in the PI3K/mTOR signalling network[J]. Int J Mol Sci, 2021, 22(13):6944.
[18] Yan Y, Zhou Y, Li J, et al. Sulforaphane downregulated fatty acid synthase and inhibited microtubule-mediated mitophagy leading to apoptosis[J]. Cell Death Dis, 2021, 12(10):917.
[19] Beibei M, Qi Z, Li M, et al. Overview of research into mTOR inhibitors[J].Molecules,2022, 27(16):5295.
[20] Thoreen CC, Sabatini DM. Rapamycin inhibits mTORC1, but not completely[J]. Autophagy, 2009, 5(5):725-726.
PDF(4624 KB)

Accesses

Citation

Detail

Sections
Recommended

/