Establishment and application of animal models of myocardial infarction

WANG Hai-jie TAN Yu-zhen

Acta Anatomica Sinica ›› 2024, Vol. 55 ›› Issue (2) : 247-252.

PDF(883 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(883 KB)
Acta Anatomica Sinica ›› 2024, Vol. 55 ›› Issue (2) : 247-252. DOI: 10.16098/j.issn.0529-1356.2024.02.018
Review

Establishment and application of animal models of myocardial infarction

  • WANG  Hai-jie  TAN  Yu-zhen*
Author information +
History +

Abstract

Myocardial infarction is one of the severe cardiovascular diseases. The patients with myocardial infarction die of heart failure or arrhythmia. In recent years, the studies in myocardial infarction therapies have advanced greatly, especially the preclinical experimental studies. The experimental studies of myocardial infarction often rely on animal models. Therefore, successful establishment of the myocardial infarction models has important application value in exploring the new techniques and measures for repairing the infarcted myocardium. In this paper, the techniques in establishment of the myocardial infarction models and strategies of their application are summarized. 

Key words

Coronary artery / Myocardial infarction / Myocardial regeneration / Angiogenesis / Animal model


Cite this article

Download Citations
WANG Hai-jie TAN Yu-zhen. Establishment and application of animal models of myocardial infarction[J]. Acta Anatomica Sinica. 2024, 55(2): 247-252 https://doi.org/10.16098/j.issn.0529-1356.2024.02.018

References

[1]Lindsey ML, Bolli R, Canty JM Jr, et al. Guidelines for experimental models of myocardial ischemia and infarction[J]. Am J Physiol Heart Circ Physiol, 2018, 314(4): H812-H838.
[2]Martin TP, MacDonald EA, Elbassioni AAM, et al. Preclinical models of myocardial infarction: from mechanism to translation[J]. Br J Pharmacol, 2022, 179(5):770-791.
[3]Jiang ZL, Hu HT. Anatomical observation on the coronary arteries of the rat heart[J]. Acta Anatomica Sinica, 1984, 15(2):136-142. (in Chinese)
姜宗来,胡海涛.大鼠冠状动脉的解剖观察[J].解剖学报,1984,15(2):136-142.
[4]Wu JH, Wang HJ, Tan YZ, et al. Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction[J]. Stem Cells Dev, 2012, 21(8):1367-1379.
[5]Wang H, Paulsen MJ, Hironaka CE, et al. Natural heart regeneration in a neonatal rat myocardial infarction model[J]. Cells, 2020, 9(1):229.
[6]Wang QL, Wang HJ, Li ZH, et al. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium[J]. J Cell Mol Med, 2017, 21(9):1751-1766.
[7]Salto-Tellez M, Lim SY, El Oakley RM, et al. Myocardial infarction in the C57BL/6J mouse: A quantifiable and highly reproducible experimental model[J]. Cardiovasc Pathol, 2004, 13(2):91-97.
[8]Gao E, Lei YH, Shang X, et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse[J]. Circ Res, 2010, 107(12):1445-1453.
[9]Reichert K, Colantuono B, McCormack I, et al. Murine left anterior descending (LAD) coronary artery ligation: An improved and simplified model for myocardial Infarction[J]. J Vis Exp, 2017, (122): e55353.
[10]Lugrin J, Parapanov R, Krueger T, et al. Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery[J]. J Vis Exp, 2019, (150): e59591. 
[11]Zhang NK, Gao LR, Zhao L, et al. Study on the rapid establishment of myocardial infarction model in mice[J]. Transl Med J, 2020, 9(6):373-377. (in Chinese)
张宁坤,高连如,赵力,等.小鼠心肌梗死模型的快速制作方法研究[J].转化医学杂志,2020,9(6):373-377.
[12]Crick SJ, Sheppard MN, Ho SY, et al. Anatomy of the pig heart: comparisons with normal human cardiac structure[J]. J Anat, 1998, 193 ( Pt 1):105-119.
[13]Wang HJ, Tan YZh. Practical Heart Anatomy[M]. Shanghai: Fudan University Press, 2007:116-129. (in Chinese)
王海杰,谭玉珍.实用心脏解剖学[M].上海:复旦大学出版社,2007:116-129.
[14]Weaver ME, Pantely GA, Bristow JD, et al. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man[J]. Cardiovasc Res, 1986, 20(12):907-917.
[15]Krombach GA, Kinzel S, Mahnken AH, et al. Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine[J]. Invest Radiol, 2005, 40(1):14-18.
[16]Pérez de Prado A, Cuellas-Ramón C, Regueiro-Purriños M, et al. Closed-chest experimental porcine model of acute myocardial infarction-reperfusion[J]. J Pharmacol Toxicol Methods, 2009, 60(3):301-306.
[17]Bikou O, Watanabe S, Hajjar RJ, et al. A pig model of myocardial infarction: Catheter-based approaches[J]. Methods Mol Biol, 2018, 1816:281-294. 
[18]Schüttler D, Tomsits P, Bleyer C, et al. A practical guide to setting up pig models for cardiovascular catheterization, electrophysiological assessment and heart disease research[J]. Lab Animal, 2022, 51(2):46-67.
[19]Koudstaal S, Jansen of Lorkeers S, Gho JM, et al. Myocardial infarction and functional outcome assessment in pigs[J]. J Vis Exp, 2014, (86):51296.
[20]Ellenbroek GH, van Hout GP, Timmers L, et al. Primary outcome assessment in a pig model of acute myocardial infarction[J]. J Vis Exp, 2016, (116):54021.
[21]Silvis MJM, van Hout GPJ, Fiolet ATL, et al. Experimental parameters and infarct size in closed chest pig LAD ischemia reperfusion models; lessons learned[J]. BMC Cardiovasc Disord, 2021, 21(1):171.
[22]Suzuki Y, Lyons JK, Yeung AC, et al. In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk[J]. Catheter Cardiovasc Interv, 2008, 71(1):100-107.
[23]Abdelhafez MM, Shaw J, Wilbs J, et al. Improvement of a closed chest porcine myocardial infarction model by standardization of tissue and blood sampling procedures[J]. J Vis Exp, 2018, (133): e56856. 
[24]Skyschally A, Hagelschuer H, Kleinbongard P, et al. Larger infarct size but equal protection by ischemic conditioning in septum and anterior free wall of pigs with LAD occlusion[J]. Physiol Rep, 2019, 7 (19):e14236.
[25]Wang YL, Zhang GT, Wang HJ, et al. Preinduction with bone morphogenetic protein-2 enhances cardiomyogenic differentiation of c-kit+ mesenchymal stem cells and repair of infarcted myocardium[J]. Int J Cardiol 2018, 265:173-180. 
[26]Zhou P, Yu SN, Zhang HF, et al. c-kit+VEGFR-2+ mesenchymal stem cells differentiate into cardiovascular cells and repair infarcted myocardium after transplantation[J]. Stem Cell Rev Rep, 2023, 19(1): 230-247.
[27]Zhang HF, Wang YL, Tan YZ, et al. Enhancement of cardiac lymphangiogenesis by transplantation of CD34+VEGFR-3+ endothelial progenitor cells and sustained release of VEGF-C[J]. Basic Res Cardiol, 2019, 114(6):43.
[28]Liu Z, Mikrani R, Zubair HM, et al. Systemic and local delivery of mesenchymal stem cells for heart renovation: challenges and innovations[J]. Eur J Pharmacol, 2020, 876:173049.
[29]McCall FC, Telukuntla KS, Karantalis V, et al. Myocardial infarction and intramyocardial injection models in swine[J]. Nat Protoc, 2012, 7(8):1479-1496.
[30]Guo HD, Wang HJ, Tan YZ, et al. Transplantation of marrow-derived stem cells carried in fibrin improves cardiac function after myocardial infarction[J]. Tissue Eng Part A, 2011, 17(1-2): 45-58.
[31]Li ZH, Wang YL, Wang HJ, et al. Rapamycin-preactivated autophagy enhances survival and differentiation of mesenchymal stem cells after transplantation into infarcted myocardium[J]. Stem Cell Rev Rep, 2020, 16(2):344-356.
[32]Zhang GT, Tan YZh, Wang HJ, et al. Effects of marrow-derived cardiac stem cell transplantation after myocardial infarction in rats[J]. Chinese Journal of Cardiology, 2007, 35(10):940-944. (in Chinese)
张贵焘,谭玉珍,王海杰,等.骨髓源性心肌干细胞移植治疗心肌梗死的实验研究[J].中华心血管病杂志,2007,35(10):940-944.
[33]Wang YL, Yu SN, Shen HR, et al. Thymosin β4 released from functionalized self-assembling peptide activates epicardium and enhances repair of infarcted myocardium[J]. Theranostics, 2021, 11(9):4262-4280.
[34]Tan YZ, Shen HR, Wang YL, et al. Retinoic acid released from self-assembling peptide activates cardiomyocyte proliferation and enhances repair of infarcted myocardium[J]. Exp Cell Res, 2023, 422(1):113440.
[35]Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction[J]. Adv Drug Deliver Rev, 2021, 173:181-215. 
[36]Wang GD, Tan YZ, Wang HJ, et al. Autophagy promotes degradation of polyethyleneimine-alginate nanoparticles in endothelial progenitor cells[J]. Int J Nanomed 2017, 12: 6661-6675. 
PDF(883 KB)

Accesses

Citation

Detail

Sections
Recommended

/