Automatic extraction of point cloud on cartilage surface of intraoperative knee using FPFH-PointNet

LIU Yan-jing SHI Yong-hong

Acta Anatomica Sinica ›› 2023, Vol. 54 ›› Issue (5) : 553-559.

PDF(8140 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(8140 KB)
Acta Anatomica Sinica ›› 2023, Vol. 54 ›› Issue (5) : 553-559. DOI: 10.16098/j.issn.0529-1356.2023.05.008
Anatomy

Automatic extraction of point cloud on cartilage surface of intraoperative knee using FPFH-PointNet

  • LIU  Yan-jing1,2  SHI  Yong-hong1,2*
Author information +
History +

Abstract


 Objective  The navigation system of robot-assisted knee arthroplasty uses a laser scanner to acquire intraoperative cartilage point clouds and align them with the preoperative model for automatic non contact space registration. The intraoperative patient knee lesion point cloud contains a large number of irrelevant background point clouds of muscles, tendons, ligaments and surgical instruments. Manual removal of irrelevant point clouds takes up surgery time due to human-computer interaction, so in this study we proposed a novel method  for automatic extraction of point clouds from the knee cartilage surface for fast and accurate intraoperative registration.    Methods  Due to the lack of adequate description of cartilage surface and geometric local information, PointNet cannot extract cartilage point clouds with high precision. In this paper, a fast point feature histogram(FPFH)-PointNet method  combined with fast point feature histogram was proposed, which effectively described the appearance of cartilage point cloud and achieved the automatic and efficient segmentation of cartilage point cloud.    Results  The point clouds of distal femoral cartilage of 10 cadaveric knee specimens and 1 human leg model were scanned from different directions as data sets. The accuracy of cartilage point cloud segmentation by PointNet and FPFH-PointNet were 0.94 ±0.003 and 0.98 ±0, and mean intersection over union(mIOU) were 0.83 ±0.015 and 0.93 ±0.005, respectively. Compared with PointNet, FPFH-PointNet improved accuracy and mIOU by 4% and 10% respectively, while the elapsed time was only about 1.37 s.    Conclusion  FPFH-PointNet can accurately and automatically extract the knee cartilage point cloud, which meets the performance requirement for intraoperative navigation.

Key words

 Knee arthroplasty / Surgical navigation / Point cloud segmentation / PointNet / Fast point feature histogram / Human

Cite this article

Download Citations
LIU Yan-jing SHI Yong-hong. Automatic extraction of point cloud on cartilage surface of intraoperative knee using FPFH-PointNet[J]. Acta Anatomica Sinica. 2023, 54(5): 553-559 https://doi.org/10.16098/j.issn.0529-1356.2023.05.008

References

 [1]Jiao  PF, Liu Y, Bi ZhY. Three dimensional digitized dental model with root based on laser scanning and CT data[J]. Chinese Journal of Clinical Anatomy, 2013,31(4):389-392. (in Chinese) 
焦培峰, 刘阳, 毕振宇. 基于激光扫描与CT建立带牙根的三维数字化牙颌模型[J]. 中国临床解剖学杂志, 2013,31(4):389-392. 
 [2]Joshi  SV, Rowe PJ. A novel approach for intra-operative shape acquisition of the tibio-femoral joints using 3D laser scanning in computer assisted orthopaedic surgery[J]. Int J Med Robot, 2018,14(1): e1855.  
 [3]Shamir RR, Freiman M, Joskowicz L, et al. Surface-based facial scan registration in neuronavigation procedures: a clinical study[J]. J Neurosurg, 2009,111(6): 1201-1206.  
 [4]Chan B, Auyeung J, Rudan JF, et al. Intraoperative application of hand-held structured light scanning: a feasibility study[J]. Int J Comput Assist Radiol Surg, 2016,11(6): 1101-1108.  
 [5]Zhang J, Zhao X, Chen Z, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019,7: 179118-179133. 
 [6]Liu YQ, Ao JF. 3D point cloud semantic segmentation based on multi-information deep learning[J]. Laser and Infrared, 2021,51(5): 675-680. (in Chinese) 
刘友群, 敖建锋. 基于多信息深度学习的3D点云语义分割[J]. 激光与红外, 2021,51(5): 675-680. 
 [7]Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Santiago: IEEE International Conference on Computer Vision, 2015.  
 [8]Lawin FJ, Danelljan M, Tosteberg P, et al. Deep projective 3D semantic segmentation[C]. Ystad:International Conference on Computer Analysis of Images and Patterns (ICCAIP), 2017.  
 [9]Alonso I, Riazuelo L, Montesano L, et al. 3D-MiniNet: learning a 2D Representation from point clouds for fast and efficient 3D lidar semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020,5(4): 5432-5439.  
 [10]Maturana D, Scherer S. VoxNet: A 3D convolutional neural network for real-time object recognition[C]. Hamburg: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.  
 [11]Zhai ZL, Zhang X, Yao LY. Multi-scale dynamic graph convolution network for point clouds classification[J]. IEEE Access, 2020, (99): 1.  
 [12]Qi  CR, Su H, Mo K, et al. PointNet: deep learning on Point Sets for 3D classification and segmentation[C]. Honolulu : IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.  
 [13]Qi CR, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]. Long Beach: Neural Information Processing Systems 30 (NIPS), 2017.  
 [14]Wang Y, Sun Y, Liu Z, et al. Dynamic graph CNN for learning on Point Clouds[J]. ACM Transactions on Graphics, 2019:38(5):1-12. 
 [15]Rusu RB, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]. Kobe: IEEE International Conference on Robotics and Automation, 2009.  


  [16]Rusu RB, Blodow N, Marton ZC, et al. Aligning Point Cloud Views using Persistent Feature Histograms[C]. Nice: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.  

 [17]Liu Y, Yao D, Zhai Z, et al. Fusion of multimoodality image and point cloud for spatial surface registration for knee arthroplasty [J]. Int J Med Robot, 2022,18(5): e2426.  
      

PDF(8140 KB)

Accesses

Citation

Detail

Sections
Recommended

/