Role and research progress of circular RNA in Alzheimer’s disease #br#

#br#

WANG Hongfang GENG Dan-dan ZHANG Run-jiao LIU Qing LI Yi-bo WANG Lei

Acta Anatomica Sinica ›› 2023, Vol. 54 ›› Issue (4) : 490-494.

PDF(3214 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(3214 KB)
Acta Anatomica Sinica ›› 2023, Vol. 54 ›› Issue (4) : 490-494. DOI: 10.16098/j.issn.0529-1356.2023.04.017
Review

Role and research progress of circular RNA in Alzheimer’s disease #br#

#br#

  • WANG Hongfang1 GENG Dan-dan1,2 ZHANG Run-jiao1 LIU Qing1  LI Yi-bo WANG Lei1,2*  
Author information +
History +

Abstract

The circular RNA (circRNA) is a class of endogenous expressed non-coding RNA that are formed by covalently closed cyclization through reverse splicing. In recent years, a variety of highly conserved and cell-type specific circRNA have been identified in eukaryotes. Alzheimer’s disease (AD) is a common neurodegenerative disease and the most common cause of dementia in the elderly. Recent studies had shown that circRNA was involved in the pathogenesis and development of AD, such as amyloid β-protein (Aβ) metabolic, neuroinflammation, oxidative stress, autophagy and synaptic plasticity. The role and application value of circRNA in AD pathology are reviewed to provide a theoretical basis for the application of circRNA in the treatment and diagnosis of AD.

Key words

Circular RNA / Alzheimer’s disease / Neurodegenerative disease

Cite this article

Download Citations
WANG Hongfang GENG Dan-dan ZHANG Run-jiao LIU Qing LI Yi-bo WANG Lei. Role and research progress of circular RNA in Alzheimer’s disease #br#
#br#
[J]. Acta Anatomica Sinica. 2023, 54(4): 490-494 https://doi.org/10.16098/j.issn.0529-1356.2023.04.017

References

[1]Ji KY, Ma WL, Zheng WL. Differentially expressed genes related to age and the Alzheimer’s disease[J]. Acta Anatomica Sinica, 2015, 46(2): 164-169. (in Chinese) 
冀开元,马文丽,郑文岭. 阿尔茨海默病关于年龄因素的差异基因表达分析[J]. 解剖学报, 2015, 46(2): 164-169. 
[2]Rabinovici GD, Karlawish J, Knopman D, et al. Testing and disclosures related to amyloid imaging and Alzheimer’s disease: common questions and fact sheet summary[J]. Alzheimers Dement, 2016, 12(4): 510-515. 
[3]Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. 
[4]Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856. 
[5]Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. 
[6]Santos-Rodriguez G, Voineagu I, Weatheritt RJ. Evolutionary dynamics of circular RNAs in primates[J]. Elife, 2021, 10: e69148. 
[7]Chen LL. The biogenesis and emerging roles of circular RNAs[J].Nat Rev Mol Cell Biol, 2016, 17(4): 205-211. 
[8]Prats A C, David F, Diallo LH, et al. Circular RNA, the key for translation[J].Int J Mol Sci, 2020, 21(22):8591. 
[9]Li R, Lindholm K, Yang LB, et al. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients[J]. Proc Natl Acad Sci USA, 2004, 101(10):3632-3637.
[10]Mo D, Li X, Raabe CA, et al. Circular RNA encoded amyloid beta peptides-a novel putative player in Alzheimer’s Disease[J]. Cells, 2020, 9(10):2196. 
[11]Song C, Zhang Y, Huang W, et al. Circular RNA Cwc27 contributes to Alzheimer’s disease pathogenesis by repressing Pur-α activity[J].Cell Death Differ, 2022, 29(2): 393-406. 
[12]Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease[J]. Neurosci Bull, 2019, 35(5): 877-888. 
[13]Zhang N, Gao Y, Yu S, et al. Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells [J]. Life Sci, 2020, 252:117637. 
[14]Zhao Y, Alexandrov PN, Jaber V, et al. Deficiency in the Ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7)[J]. Genes (Basel), 2016, 7(12):116. 
[15]Shi Z, Chen T, Yao Q, et al. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-κB-dependent manner[J]. Febs J, 2017, 284(7): 1096-1109. 
[16]Li Y, Fan H, Sun J, et al. Circular RNA expression profile of Alzheimer’s disease and its clinical significance as biomarkers for the disease risk and progression[J]. Int J Biochem Cell Biol, 2020, 123:105747. 
[17]Ma N, Pan J, Wen Y, et al. circTulp4 functions in Alzheimer’s disease pathogenesis by regulating its parental gene, Tulp4[J]. Mol Ther, 2021, 29(6): 2167-2181. 
[18]Yang M, Xiang G, Yu D, et al. Hsa_circ_0002468 regulates the neuronal differentiation of SH-SY5Y cells by modulating the MiR-561/E2F8 axis[J]. Med Sci Monit, 2019, 25:2511-2519. 
[19]Yang H, Wang H, Shang H, et al. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease J]. Cell Cycle, 2019, 18(18): 2197-2214. 
[20]Wu L, Du Q and Wu C. CircLPAR1/miR-212-3p/ZNF217 feedback loop promotes amyloid β-induced neuronal injury in Alzheimer’s disease[J]. Brain Res, 2021, 1770:147622. 
[21]Meng S, Wang B, Li W. CircAXL knockdown alleviates Aβ(1-42)-induced neurotoxicity in Alzheimer’s disease via repressing PDE4A by releasing miR-1306-5p[J].Neurochem Res, 2022, 47(6): 1707-1720. 
[22]Li Y, Han X, Fan H, et al. Circular RNA AXL increases neuron injury and inflammation through targeting microRNA-328 mediated BACE1 in Alzheimer’s disease[J].Neurosci Lett, 2022, 776:136531. 
[23]Huang JL, Xu ZH, Yang SM., et al. Identification of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in a panax notoginseng saponins-treated Alzheimer’s disease mouse model[J].Comput Struct Biotechnol J, 2018, 16:523-531. 
[24]Butterfield DA. Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148-160. 
[25]Lin S P, Hu J, Wei JX, et al. Silencing of circFoxO3 protects HT22 cells from glutamate-induced oxidative injury via regulating the mitochondrial apoptosis pathway[J]. Cell Mol Neurobiol, 2020, 40(7): 1231-1242. 
[26]Cheng Q, Cao X, Xue L, et al. CircPRKCI-miR-545/589-E2F7 axis dysregulation mediates hydrogen peroxideinduced neuronal cell injury[J].Biochem Biophys Res Commun, 2019, 514(2): 428-435. 
[27]Diling C, Yinrui G, Longkai Q, et al. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding dynamin-1 and adaptor protein 2 B1 in AD-like mice[J]. Aging (Albany NY), 2019, 11(24): 12002-12031. 
[28]Huang JL, Qin MC, Zhou Y, et al. Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model[J]. Aging (Albany NY), 2018, 10(2): 253-265. 
[29]You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J].Nat Neurosci, 2015, 18(4): 603-610. 
[30]Cochran KR, Veeraraghavan K, Kundu G, et al. Systematic Identification of circRNAs in Alzheimer’s disease[J]. Genes (Basel), 2021, 12(8):1258. 
[31]Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations[J]. Nat Neurosci, 2019, 22(11): 1903-1912. 
PDF(3214 KB)

Accesses

Citation

Detail

Sections
Recommended

/