Multi-index analysis of regional brain activity in patients with Alzheimer’s disease during resting state

XU Lin LIU Xiao-li CHEN Zheng-zhen WEN Cai-yun LI Chang-sheng LI Ru-hua CHEN Dai-qian CHEN Cheng-chun

Acta Anatomica Sinica ›› 2023, Vol. 54 ›› Issue (1) : 75-81.

PDF(4592 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(4592 KB)
Acta Anatomica Sinica ›› 2023, Vol. 54 ›› Issue (1) : 75-81. DOI: 10.16098/j.issn.0529-1356.2023.01.011
Anatomy

Multi-index analysis of regional brain activity in patients with Alzheimer’s disease during resting state

  • XU  Lin LIU Xiao-li1  CHEN  Zheng-zhen1  WEN Cai-yun2  LI Chang-sheng3  LI Ru-hua1  CHEN  Dai-qian4  CHEN  Cheng-chun1*
Author information +
History +

Abstract

Objective To investigate the spontaneous neural activity in the brain of patients with Alzheimer’s disease (AD) used 3 indicators of resting state-functional magnetic resonance (rs-fMRI) amplitude of low frequency fluctuation (ALFF), fractional amplitude of low frequency fluctuation (fALFF) and percentage amplitude fluctuation (PerAF). MethodsTotally 36 clinically diagnosed AD patients and 40 healthy volunteers were scanned by fMRI in resting state respectively. ALFF, fALFF and PerAF were used to calculate and compare the changes of brain regions between the two groups.   Results Compared with the normal control group, mALFF value in AD group increased significantly in bilateral caudate nucleus, medial frontal gyrus, superior frontal gyrus, gyrus rectus, anterior cingulate gyrus, olfactive cortex, left middle frontal gyrus and inferior frontal gyrus (P<0.05). mALFF values decreased significantly in the right middle temporal gyrus, inferior temporal gyrus, inferior occipital gyrus, middle occipital gyrus, bilateral calcarine, cuneus, lingual gyrus, superior occipital gyrus,vermis, precuneus and other regions (P<0.05). In AD group, mfALFF value of right inferior temporal gyrus, anterior cerebellar lobe, fusiform gyrus, left superior frontal gyrus, medial frontal gyrus, middle frontal gyrus, inferior frontal gyrus, gyrus rectus and anterior cingulate gyrus increased significantly (P<0.05); mfALFF values decreased significantly in bilateral lingual gyrus, left calcarine, cuneus, superior occipital gyrus, middle occipital gyrus and vermis (P<0.05). In AD group, mPerAF value incr   eased significantly in bilateral gyrus rectus, anterior cingulate gyrus, medial frontal gyrus, left superior frontal gyrus, caudate nucleus, middle frontal gyrus, inferior frontal gyrus, olfactive cortex and insula (P<0.05); mPerAF values decreased significantly in bilateral calcarine, cuneus, superior occipital gyrus, lingual gyrus, precuneus, left fusiform gyrus, inferior occipital gyrus, right superior parietal lobule, angular gyrus, middle temporal gyrus, inferior temporal gyrus and middle occipital gyrus (P<0.05).   Conclusion The default mode network (DMN) and visual network of AD patients are characterized by abnormal brain activity, with the most significant neural activity in the prefrontal cortex and visual cortex.  

Key words

Alzheimer’s disease
/ Amplitude of low frequency fluctuation / Fractional amplitude of low frequency fluctuation / Percentage amplitude fluctuation / Resting state-functional magnetic resonance / Human

Cite this article

Download Citations
XU Lin LIU Xiao-li CHEN Zheng-zhen WEN Cai-yun LI Chang-sheng LI Ru-hua CHEN Dai-qian CHEN Cheng-chun. Multi-index analysis of regional brain activity in patients with Alzheimer’s disease during resting state[J]. Acta Anatomica Sinica. 2023, 54(1): 75-81 https://doi.org/10.16098/j.issn.0529-1356.2023.01.011

References

[1]Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease [J]. Lancet, 2006, 368(9533): 387-403.
[2]He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer’s disease: a  combined structural and resting-state functional MRI study [J]. Neuroimage, 2007, 35(2): 488-500.
[3]Lees AJ. The relevance of the Lewy Body to the pathogenesis of idiopathic Parkinson’s disease: accuracy of clinical diagnosis of idiopathic Parkinson’s disease [J]. J Neurol Neurosurg Psychiatry, 2012, 83(10): 954-955.
[4]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI [J].Magn Reson Med, 1995, 34(4):537-541.
[5]Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state  functional MRI [J]. Brain Dev, 2007, 29(2): 83-91.
[6]Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequencyfluctuation  (ALFF) for resting-state fMRI: fractional ALFF [J]. J Neurosci Methods, 2008, 172(1): 137-141.
[7]Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: complex and reliable [J]. Neuroimage, 2010, 49(2): 1432-1445.
[8]Yan CG, Craddock RC, Zuo XN, et al. Standardizing the intrinsic brain: towards robust measurement of  inter-individual variation in 1000 functional connectomes [J]. Neuroimage, 2013, 80: 246-262.
[9]Jia XZ, Sun JW, Ji GJ, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at   single voxel level [J].PLoS One, 2020, 15(1): e0227021.
[10]Raichle ME, Macleod AM, Snyder AZ, et al. A default mode of brain function. [J]. Proc Natl Acad Sci USA,  2001, 98(2): 676-682.
[11]Zhang D, Raichle ME. Disease and the brain’s dark energy[J]. Nat Revs Neurol, 2010, 6(1):15-28.
[12]Cao JJ, Fan WJ, Shi ZhY, et al. Effect of amyloid beta-peptide25-35 neurotoxicity on cytoskeletons of PC12  cells[J]. Acta Anatomica Sinica, 2016, 47(4):469-475. (in Chinese)
曹静井,范文娟,石贞宇,等. β淀粉样蛋白25~35对 PC12 细胞骨架的毒性作用[J]. 解剖学报,2016,47(4):469-475.
[13]Greicius MD, Flores BH, Menon V, et al. Resting-state functional connectivity in major depression:  abnormally increased contributions from subgenual cingulate cortex and thalamus [J]. Biol Psychiatry, 2007, 62(5): 429-437.
[14]Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state  default mode of brain function hypothesis [J]. Hum Brain Mapp, 2005, 26(1): 15-29.
[15]Gould RL, Arroyo B, Brown RG, et al. Brain mechanisms of successful compensation during learning in  Alzheimer disease[J]. Neurology, 2006, 67(6):1011-1017.
[16]Buckner RL. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve  factors that compensate[J].Neuron, 2004, 44(1):195-208.
[17]Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in  Alzheimer’s disease: Patterns of functional MRI activation [J]. J Int Neuropsychol Soc, 1999, 5(5):377-392.
[18]Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal  network in Alzheimer’s disease[J]. J Neurosci, 2003, 23(3):986-993.
[19]Rizzo M, Anderson SW, Dawson J, et al. Vision and cognition in Alzheimer’s disease[J]. Neuropsychologia,  2000, 38(8) :1157-1169.
[20]Holler DE, Behrmann M, Snow JC. Real-world size coding of solid objects, but not 2-D or 3-D images, in  visual agnosia patients with bilateral ventral lesions. [J]. Cortex, 2019,119: 555-568.
[21]Bokde ALW, Lopez-Bayo P, Born C, et al. Alzheimer disease: functional abnormalities in the dorsal visual  pathway[J]. Radiology, 2010, 254(1):219-226.
[22]Fu CHY, Mourao-Miranda J, Costafrecla SG, et al. Pattern classification of sad facial processing: Toward the  development of neurobiological markers in depression[J]. Biol Psychiatry, 2008, 63(7): 656-662.
[23]Vannini P, Lehmann C, Dierks T, et al. Failure to modulate neural response to increased task demand in mild  Alzheimer’s disease: fMRI study of visuospatial processing[J]. Neurobiol Dis, 2008, 31(3): 287-297.
[24]Prvulovic D, Hubl D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer’s disease[J].  NeuroImage, 2002, 17(3): 1403-1414.
[25]Graybiel A. The basal ganglia[J]. Curr Biol, 2000, 10(14): R509-R511.
[26]Gould RL, Brown RG, Owen AM, et al. Functional neuroanatomy of successful paired associate learning in  Alzheimer’s disease[J]. Am J Psychiatry, 2005, 162(11): 2049-2060.
[27]Bas O, Acer N, Mas N, et al. Stereological evaluation of the volume and volumefraction of intracranial  structures in magnetic resonance[J]. Ann Anat, 2009, 191(2): 186-195.
[28]Sjobeck M,Englund E. Alzheimer’s disease and the cerebellum:a morphologic study on neuronal and glial  changes[J]. Dement Geriatr Cogn Disord, 2001, 12(3): 211-218.
[29]Turner BM, Paradiso S, Marvel CL, et al. The cerebellum and emotional experience[J]. Neuropsychologia,  2007, 45(6): 1331-1341.

Funding

The cerebral medullary venous networks visualization by susceptibility-weighted imaging;The research on the predictive value of ischemic stroke in TIA patients based on the morphological changes of deep medullary veins in SWI;Characteristics of medial temporal lobe lesions in early Alzheimer's disease based on T2 mapping combined with DTI
PDF(4592 KB)

Accesses

Citation

Detail

Sections
Recommended

/