Molecular mechanism underlying vascular development in the brain

ZHANG Si-qi KANG Chen-xi ZHANG Pei-yan LUO Hai-xia LI Fei SHI Juan LI Yun-qing

Acta Anatomica Sinica ›› 2022, Vol. 53 ›› Issue (5) : 680-686.

PDF(2762 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(2762 KB)
Acta Anatomica Sinica ›› 2022, Vol. 53 ›› Issue (5) : 680-686. DOI: 10.16098/j.issn.0529-1356.2022.05.022
Review

Molecular mechanism underlying vascular development in the brain

  • ZHANG  Si-qi1  KANG  Chen-xi1  ZHANG  Pei-yan1  LUO  Hai-xia1  LI  Fei2*  SHI  Juan2* LI  Yun-qing
Author information +
History +

Abstract

As the pipelines of nutrient and oxygen in the brain, cerebral vessels play an important role in the development and normal function of the brain. The development of the cerebrovascular system is divided into two processes, primitive vasculogenesis and angiogenesis. In this review, we summarize the roles, regulation mechanisms, as well as the interactions of the essential signaling molecules, such as the family members of vascular endothelial growth factor (VEGF), neuropillin, Wnt, Notch, Hedgehog, in the vessel development, aiming to provide a reference for the basic and clinical investigation and the prevention and treatment of vascular diseases.

Key words

Cerebral angiogenesis / Angiogenesis / Vascular endothelial growth factor / Wnt signaling pathway / Notch signaling pathway

Cite this article

Download Citations
ZHANG Si-qi KANG Chen-xi ZHANG Pei-yan LUO Hai-xia LI Fei SHI Juan LI Yun-qing. Molecular mechanism underlying vascular development in the brain[J]. Acta Anatomica Sinica. 2022, 53(5): 680-686 https://doi.org/10.16098/j.issn.0529-1356.2022.05.022

References

[1] Lammert E, Axnick J. Vascular lumen formation[J]. Cold Spring Harb Perspect Med, 2012, 2(4):a6619.
[2] Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation[J]. Nature, 2000, 407(6801):242-248.
[3] Ohnuki H, Tosato G. Characterization of semaphorin 6A-mediated effects on angiogenesis through regulation of VEGF signaling[J]. Methods Mol Biol, 2017, 1493:345-361.
 [4] Senger DR, Davis GE. Angiogenesis[J]. Cold Spring Harb Perspect Biol, 2011, 3(8):a5090.
 [5] Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia[J]. J Cell Biol, 2003, 161(6):1163-1177.
 [6] Hellstr?m M, Kalén M, Lindahl P, et al. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse[J]. Development, 1999, 126(14):3047-3055.
 [7] Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel formation[J]. Development (Cambridge, England), 2011, 138(21):4569-4583.
 [8] Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis[J]. Pharmacological Rev, 2004, 56(4):549-580.
[9] Beck H, Plate KH. Angiogenesis after cerebral ischemia[J]. Acta Neuropathol, 2009, 117(5):48-496.
[10] Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited[J]. Acta Neuropathologica, 2012, 124(6):763-775.
[11] Abdel-Qadir H, Ethier JL, Lee DS, et al. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis[J]. Cancer Treat Rev, 2017, 53:120-127.
[12] B?r T. The vascular system of the cerebral cortex[J]. Adv Anat Embryol Cell Biol, 1980, 59:1-62.
[13] Wittko IM, Schnzer A, Kuzmichev A, et al. VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo[J]. J Neurosci, 2009, 29(27):8704-8714.
[14] Plate KH. Mechanisms of angiogenesis in the brain[J]. J Neuropathol Exp Neurol, 1999, 58(4):313-320.
[15] Whiteus C, Freitas C, Grutzendler J. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period[J]. Nature, 2014, 505(7483):407-411.
[16] Hallene KL, Oby E, Lee BJ, et al. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations[J]. Neuroscience, 2006, 142(1):267-283.
[17] Wittko-Schneider IM, Schneider FT, Plate KH. Cerebral angiogenesis during development: who is conducting the orchestra[J]? Methods Mol Biol, 2014, 1135:3-20.
[18] Kittappa R, Chang WW, Awatramani RB, et al. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age[J]. PLoS Biol, 2007, 5(12):e325.
[19] Raab S, Beck H, Gaumann A, et al. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor[J]. Thromb Haemost, 2004, 91(3):595-605.
[20] Pierfelice T, Alberi L, Gaiano N. Notch in the vertebrate nervous system: an old dog with new tricks[J]. Neuron, 2011, 69(5):840-855.
[21] Mould AW, Tonks ID, Cahill MM, et al. Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis[J]. Arthritis Rheum, 2003, 48(9):2660-2669.
[22] Robel S, Berninger B, Götz M. The stem cell potential of glia: lessons from reactive gliosis[J]. Nat Rev Neurosci, 2011, 12(2):88-104.
[23] Kremer C, Breier G, Risau W, et al. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system[J]. Cancer Res, 1997, 57(17):3852-3859.
[24] Shim JW, Madsen JR. VEGF signaling in neurological disorders[J]. Int J Mol Sci, 2018, 19(1):275.
[25] Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels: who is talking to whom about what[J]? Circ Res, 2007, 100(11):1556-1568.
[26] Li F, Lan Y, Wang Y, et al. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch[J]. Dev Cell, 2011, 20(3):291-302.
[27] Wang Y, Pan L, Moens CB, et al. Notch3 establishes brain vascular integrity by regulating pericyte number[J]. Development (Cambridge, England), 2014, 141(2):307-317.
[28] Cheng N, Brantley DM, Liu H, et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis[J]. Mol Cancer Res, 2002, 1(1):2-11.
[29] Hara Y, Nomura T, Yoshizaki K, et al. Impaired hippocampal neurogenesis and vascular formation in ephrin-A5-deficient mice[J]. Stem Cells, 2010, 28(5):974-983.
[30] Cheslow L, Alvarez JI. Glial-endothelial crosstalk regulates blood-brain barrier function[J]. Curr Opin Pharmacol. 2016, 26:39-46.
[31] Goldshmit Y, Galea MP, Bartlett PF, et al. EphA4 regulates central nervous system vascular formation[J]. J Comp Neurol, 2006, 497(6):864-875.
[32] Bochenek ML, Dickinson S, Astin JW, et al. Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding[J]. J Cell Sci, 2010, 123(8):1235-1246.
[33] Foo SS, Turner CJ, Adams S, et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly[J]. Cell, 2006, 124(1):161-173.
[34] Wittko-Schneider IM, Schneider FT, Plate KH. Cerebral angiogenesis during development: who is conducting the orchestra[J]? Methods Mol Biol, 2014, 1135:3-20.
[35] Vanhollebeke B, Stone OA, Bostaille N, et al. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis[J]. Elife, 2015, 4:e06489.
[36] Gaengel K, Niaudet C, Hagikura K, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2[J]. Dev Cell, 2012, 23(3):587-599.
[37] Hübner K, Cabochette P, Diéguez-Hurtado R, et al. Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling[J]. Nat Commun, 2018, 9(1):4860.
[38] Hou ST, Keklikian A, Slinn J, et al. Sustained up-regulation of semaphorin 3A, Neuropilin1, and doublecortin expression in ischemic mouse brain during long-term recovery[J]. Biochem Biophys Res Commun, 2008, 367(1):109-115.
[39] Robel S, Berninger B, G?tz M. The stem cell potential of glia: lessons from reactive gliosis[J]. Nat Rev Neurosci, 2011, 12(2):88-104.
[40] Feng P, Fan WJ, Liu L, et al. Inhibitory effect of recombinant human semaphorin 3A on angiogenesis of gastric cancer and the associated mechanisms[J]. Acta Anatomica Sinica, 2020, 51(2):220-227. (in Chinese)
冯品, 范文静, 刘镭, 等. 重组人信号素3A抑制胃癌血管生成及其机制[J]. 解剖学报, 2020, 51(2):220-227.
[41] Gerhardt H, Ruhrberg C, Abramsson A, et al. Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system[J]. Dev Dyn, 2004, 231(3):503-509.
[42] Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice[J]. Development (Cambridge, England), 2002, 129(20):4797-4806.
[43] Nüsslein-Volhard C, Wieschaus E.  Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795-801.
[44] Bitgood MJ, Mcmahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo[J]. Dev Biol, 1995, 172(1):126-138.
[45] Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transduction network[J]. Sci Signa, 2012, 5(246):re6.
[46] Yao Q, Renault MA, Chapouly C, et al. Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation[J]. Blood, 2014, 123(15):2429-2437.
[47] Byrd N, Becker S, Maye P, et al. Hedgehog is required for murine yolk sac angiogenesis[J]. Development (Cambridge, England), 2002, 129(2):361-372.
[48] Morrow D, Sweeney C, Birney YA, et al. Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo[J]. Am J Physiol, 2007, 292(1):C488-C496.
[49] Dohle E, Fuchs S, Kolbe M, et al. Comparative study assessing effects of sonic hedgehog and VEGF in a human co-culture model for bone vascularisation strategies[J]. Eur Cells Mater, 2011, 21:144-156.
[50] Chen W, Tang T, Eastham-Anderson J, et al. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells[J]. Proc Nat Acad Sci USA, 2011, 108(23):9589-9594.
[51] Kallakuri S, Yu JA, Li J, et al. Endothelial cilia are essential for developmental vascular integrity in zebrafish[J]. J Am Soc Nephrol, 2015, 26(4):864-875.
[52] Chapouly C, Guimbal S, Hollier PL, et al. Role of Hedgehog signaling in vasculature development, differentiation, and maintenance[J]. Int J Mol Sci, 2019, 20(12):3076.
[53] Liu TT, Du XF, Zhang BB, et al. Piezo1-mediated Ca2+ activities regulate brain vascular pathfinding during development[J]. Neuron, 2020, 108(1):180-192.
PDF(2762 KB)

Accesses

Citation

Detail

Sections
Recommended

/