Research progress on the relationship between Nogo protein and myocardial fibrosis

HU Yao-wen SUN Yan-rong SUN Hao-zhe WANG Wen-juan ZHANG Su-xin QIN Li-hua

Acta Anatomica Sinica ›› 2022, Vol. 53 ›› Issue (5) : 674-679.

PDF(1340 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(1340 KB)
Acta Anatomica Sinica ›› 2022, Vol. 53 ›› Issue (5) : 674-679. DOI: 10.16098/j.issn.0529-1356.2022.05.021
Review

Research progress on the relationship between Nogo protein and myocardial fibrosis

  • HU  Yao-wen  SUN  Yan-rong  SUN  Hao-zhe  WANG  Wen-juan  ZHANG  Su-xin  QIN  Li-hua*
Author information +
History +

Abstract

Nogo protein is the fourth member of reticulin family. Nogo mRNA produced by encoding gene transcription, forms three different RNA transcripts due to different promoter and splicing modes, namely Nogo-A, Nogo-B and Nogo-C protein. Nogo protein was first found in the central nervous system, and then proved to be widely expressed in peripheral tissues such as heart, liver and vascular endothelium. Studies have shown that Nogo protein can participate in the regulation of myocardial fibrosis through RhoA/Rho-associated kinase(ROCK) pathway, endoplasmic reticulum stress, Sce61 α and other signaling pathways. In this paper, the relationship between Nogo-A, Nogo-B, Nogo-C and myocardial fibrosis is briefly introduced.

Key words

Nogo-A / Nogo-B / Nogo-C / Myocardial fibrosis

Cite this article

Download Citations
HU Yao-wen SUN Yan-rong SUN Hao-zhe WANG Wen-juan ZHANG Su-xin QIN Li-hua. Research progress on the relationship between Nogo protein and myocardial fibrosis[J]. Acta Anatomica Sinica. 2022, 53(5): 674-679 https://doi.org/10.16098/j.issn.0529-1356.2022.05.021

References

[1] Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis[J]. Cell Mol Life Sci,2014,71(4):549-574.
[2] Frangogiannis NG. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities[J]. Mol Aspects Med, 2019, 65:70-99.
[3] Fu X, Liu Q, Li C, et al. Cardiac fibrosis and cardiac fibroblast lineage-tracing: recent advances [J]. Front Physiol, 2020, 11:416.
[4] Wanh ZhL, Zhang Y, Wang J. The role of Nogo-A and its receptor in Alzheimer’s disease [J]. Acta Anatomica Sinica, 2018, 49 (4): 549-555.(in Chinese)
王兆伦, 张艳, 王君. Nogo-A及其受体在阿尔茨海默病中的作用[J].解剖学报,2018,49(4):549-555.
[5] Schwab ME, Strittmatter SM. Nogo limits neural plasticity and recovery from injury [J]. Curr Opin Neurobiol,2014,27:53-60.
[6] Teng FY, Tang BL. Nogo signaling and non-physical injury-induced nervous system pathology [J]. J Neurosci Res,2005,79(3):273-278.
[7] Li J, Wu W, Xin Y, et al. Inhibition of Nogo-B promotes cardiac hypertrophy via endoplasmic reticulum stress[J]. Biomed Pharmacother, 2018, 104:193-203.
[8] Weng L, Jia S, Xu C, et al. Nogo-C regulates post myocardial infarction fibrosis through the interaction with ER Ca2+ leakage channel Sec61α in mouse hearts[J]. Cell Death Dis, 2018,9(6):612.
[9] Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin -associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]. Nature, 2000,403(6768):434-439.
[10] Tang J, Huang J, Wu LSh. Study on Nogo, a central nerve regeneration inhibitor [J]. Journal of Neuroanatomy, 2006, (3):362-364.(in Chinese)
唐娟,黄瑾,吴亮生.中枢神经再生抑制因子-Nogo的研究[J].神经解剖学杂志, 2006,(3):362-364.
[11] Schwab ME. Functions of Nogo proteins and their receptors in the nervous system[J]. Nat Rev Neuro sci, 2010, 11(12):799-811.

[12] Bullard TA, Protack TL, Aguilar F, et al. Identification of Nogo as a novel indicator of heart failure[J]. Physiol Genomics, 2008, 32(2):182-189.

[13] Yang M, Tang HT,Ju XH. Research progress of Nogo and nogo-r in central nervous system [J]. Anatomical Research, 2008, (1):65-67.(in Chinese)

杨明,唐洪涛,鞠学红.中枢神经系统中Nogo与Nogo-R的研究进展[J].解剖学研究, 2008,(1):65-67.
[14] Ahamed J, Laurence J. Role of platelet-derived transforming growth factor-β1 and reactive oxygen species in radiation-induced organ fibrosis [J]. Antioxid Redox Signal, 2017,27(13):977-988.
[15] Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration[J]. Nature, 2001,409(6818):341-346.
[16] Yan J, Zhou X, Guo JJ, et al. Nogo-66 inhibits adhesion and migration of microglia via GTPase Rho pathway in vitro [J]. J Neurochem, 2012,120(5): 721-731.
[17] Liu X, Cui SJ, Zhu SJ, et al. Nogo C contributes to tumorigenesis via suppressing cell growth and its interactome analysis with comparative proteomics research [J]. Int J Clin Exp Pathol, 2014,7(5):2044-2055.
[18] Di Lorenzo A, Manes TD, Davalos A, et al. Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation[J]. Blood, 2011,117(7):2284-2295.
[19] Okazaki K, Yanagawa M, Mitsuyama T, et al. Recent advances in the concept and pathogenesis of IgG4-related disease in the hepato-bilio-pancreatic system[J]. Gut Liver, 2014, 8(5):462-470.
[20] Zhang D, Utsumi T, Huang HC, et al. Reticulon 4B (Nogo-B) is a novel regulator of hepatic fibrosis[J]. Hepatology, 2011, 53(4):1306-1315.
[21] Jia S, Qiao X, Ye J, et al. Nogo-C regulates cardiomyocyte apoptosis during mouse myocardial infarction[J]. Cell Death Dis, 2016,7(10):e2432.
[22] Baya Mdzomba J, Joly S, Rodriguez L, et al. Nogo-A-targeting antibody promotes visual recovery and inhibits neuroinflammation after retinal injury[J]. Cell Death Dis, 2020, 11(2):101.
[23] Gao HC, Zhao H, Zhang WQ, et al. The role of the Rho/Rock signaling pathway in the pathogenesis of acute ischemic myocardial fibrosis in rat models [J]. Exp Ther Med, 2013,5(4):1123-1128.
[24] Wang YX, da Cunha V, Martin-McNulty B,et al. Inhibition of Rho-kinase by fasudil attenuated angiotensin Ⅱ-induced cardiac hypertrophy in apolipoprotein E deficient mice[J]. Eur J Pharmacol, 2005,512(2-3):215-222.
[25] Ran X, Zhao JX, Nie H, et al. Effects of fluoxetine on Nogo expression and collagen production with decrease of pulmonary artery pressure in rats with right ventricular failure[J]. Journal of Sichuan University(Medical Science Edition), 2016,47(6):857-861. (in Chinese)
冉迅, 赵建洵, 聂虎, 等. 氟西汀对大鼠在心衰竭肺动脉高压的影响及机制探讨[J]. 四川大学学报(医学版), 2016, 47(6): 857-861.
[26] Mohammed R, Opara K, Lall R, et al. Evaluating the effectiveness of anti-Nogo treatment in spinal cord injuries[J]. Neural Dev, 2020, 15(1):1.
[27] Li DD, Song JN, Pang HG, et al. The role of Rho/ROCK pathway in experimental diffuse axonal injury in rats [J]. Journal of Xi’an Jiaotong University (Medical Edition), 2015,36(1):16-22.(in Cinese).
李丹东,宋锦宁,庞宏刚,等.Rho/ROCK通路在大鼠实验性弥漫性轴索损伤中的作用[J].西安交通大学学报(医学版), 2015,36(1):16-22.
[28] Nieder ?st B, Oertle T, Fritsche J, et al. Nog-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1[J]. J Neuro Sci, 2002, 22(23):10368-10376.
[29] Satoh K,Fukumoto Y,Shimokawa H.Rho-kinase:important new therapeutic target in Cardiovascular diseases [J].Am J Physiol Heart Circ Physiol, 2011,301(2):H287-296.
[30] Von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species induced cardiomyocyte apoptosis[J]. Circulation, 1999,99(22):2934-2941.
[31] Li M, Qian HB. Research progress on ROS-mediated MAPK signaling pathway and myocardial fibrosis[J]. Journal of Changchun University of Chinese Medicine, 2017, 33(1):166-168.(in Chinese)
李梦,钱海兵. ROS-MAPK信号通路与心肌纤维化的研究进展[J]. 长春中医大学学报, 2017, 33(1):166-168.
[32] Chen C, Du J, Feng W, et al. β-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCδ/p38 MAPK signalling in neonatal mouse cardiac fibroblasts[J]. Br J Pharmacol, 2012,166(2):676-688.
[33] Nie H, Ran X, Zeng Zh. The effect of ligustrazine on Nogo gene regulation of myocardial fibroblast proliferation [J]. Journal of Sichuan University(Medical Science Edition),2012,43(6):843-846.(in Chinese)
聂虎,冉迅,曾智.川芎嗪对Nogo基因调控心肌成纤维细胞增殖作用的影响[J]. 四川大学学报(医学版), 2012, 43(6): 843-846.
[34] Sarkey JP, Chu M, McShane M, et al. Nogo-A knockdown inhibits hypoxia/reoxygenation-induced activation of mitochondrial-dependent apoptosis in cardiomyocytes [J]. J Mol Cell Cardiol, 2011,50(6):1044-1045.
[35] Zhang Y, Huang Y, Cantalupo A, et al. Endothelial Nogo-B regulates sphingolipid biosynthesis to promote pathological cardiac hypertrophy during chronic pressure overload[J]. JCI Insight, 2016,1(5):e85484.
[36] Zhang B, Jiang J, Yue Z, et al. Store-operated Ca2+ entry (SOCE) contributes to angiotensin Ⅱ-induced cardiac fibrosis in cardiac fibroblasts[J]. J Pharmacol Sci, 2016, 132(3):171-180.
[37] Pu Y, Ran X. Research progress of Nogo protein in cardiovascular disease [J]. Progress in Cardiovascular Disease, 2018,39(3):486-489.(in Chinese)
蒲艳,冉迅.Nogo蛋白在心血管疾病中的研究进展[J].心血管病学进展, 2018,39(3):486-489.

Funding

National Natural Science Foundation of China
PDF(1340 KB)

Accesses

Citation

Detail

Sections
Recommended

/