A new pathway for mitochondrial quality control: mitochondrial-derived vesicle

GUAN Wei-kang Lü Jing YANG Chao-xian

Acta Anatomica Sinica ›› 2021, Vol. 52 ›› Issue (1) : 152-156.

PDF(864 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(864 KB)
Acta Anatomica Sinica ›› 2021, Vol. 52 ›› Issue (1) : 152-156. DOI: 10.16098/j.issn.0529-1356.2021.01.025
Review

A new pathway for mitochondrial quality control: mitochondrial-derived vesicle

  • GUAN Wei-kang1,2 Lü Jing1,2 YANG Chao-xian1,2*
Author information +
History +

Abstract

Mitochondria are very complex dual membrane organelles in eukaryotic cells. Under physiological conditions, the regeneration and degradation of mitochondria are balanced. When the components of the proteins, lipids and DNA in the organelles are damaged, the steady state of the mitochondria is maintained by means of division, fusion, autophagy and the like, so as to maintain the integrity of the mitochondrial structure and function, which is commonly referred to as a “mitochondrial mass control”. Mitochondrial-derived vesicle (MDV) is a newly discovered pathway of mitochondrial quality control, which plays an important role in the early stage of cell stress and helps maintain the stability of mitochondrial function. In this paper, the discovery of MDV, the transport pathway, the choice of goods and the physiological effects on cells are reviewed.

Key words

Mitochondria / Mitochondrial quality control / Mitochondrial-derived vesicle

Cite this article

Download Citations
GUAN Wei-kang Lü Jing YANG Chao-xian. A new pathway for mitochondrial quality control: mitochondrial-derived vesicle[J]. Acta Anatomica Sinica. 2021, 52(1): 152-156 https://doi.org/10.16098/j.issn.0529-1356.2021.01.025

References

[1] Redmann M, Benavides GA, Wani WY, et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture[J]. Redox Biol, 2018, 17: 59-69.
[2] Bozi LH, Bechara LR, dos Santos AF, et al. Mitochondrial-derived vesicles: a new player in cardiac mitochondrial quality control[J]. J Physiol, 2016, 594(21): 6077-6078.
[3] SotoHeredero G, Baixauli F, Mittelbrunn M. Interorganelle communication between mitochondria and the endolysosomal system[J]. Front Cell Dev Biol, 2017, 5: 95.
[4] McLelland GL, Soubannier Ⅴ, Chen CX, et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control[J]. EMBO J, 2014, 33(4): 282-295.
[5] Neuspiel M, Schauss AC, Braschi E, et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers[J]. Current Biology, 2008, 18(2): 102-108.
[6] Cadete VJ, Deschênes S, Cuillerier A, et al. Formation of Mitchondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system[J]. J Physiol, 2016, 594(18): 5343-5362.
[7] Yamashita A, Fujimoto M, Katayama K, et al. Formation of mitochondrial outer membrane derived protrusions and vesicles in arabidopsis thaliana[J]. PLoS One, 2016, 11(1): e0146717.
[8] Soubannier Ⅴ, McLelland G, Zunino R, et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes[J]. Curr Biol, 2012, 22(2): 135-141.
[9] McLelland GL, Fon EA. Principles of mitochondrial vesicle transport [J]. Curr Opin Physiol, 2018, 3: 25-33.
[10] Vincowa ES, Merrihewb G, Thomas RE, et al. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo [J]. Proc Nat Acad Sci USA, 2013, 110(16): 6400-6405.
[11] Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy [J]. Hum Mol Gene, 2011, 20(9): 1726-1737.
[12] Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects[J]. Proc Nat Acad Sci USA, 2008, 105(32): 11364-11369.
[13] Narendra DP, Jin SM, Tanaka A. PINK1 is selectively stabilized on impaired mitochondria to activate parkin[J]. PLoS Biol, 2010, 8(1): e1000298.
[14] Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease[J]. Cell Tissue Res, 2018, 373(1): 21-37.
[15] Roberts RF, Tang MY, Fon EA, et al. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles [J]. Cell Biol, 2016, 79: 427-436.
[16] Sugiura A, McLelland GL, Fon EA, et al. A new pathway for mitochondrial quality control:mitochondrial-derived vesicles[J]. EMBO J, 2014, 33(19): 2142-2156.
[17] Lundmark R, Carlsson SR. SNX9 — a prelude to vesicle release[J]. J Cell Sci, 2009, 122(pt1): 5-11.
[18] Schoneberg J, Lehmann M, Ullrich A, et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission[J]. Nat Commun, 2017, 8: 15873.
[19] Juhász GA. mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin-17[J]. J Cell Biol, 2016, 214(3): 241-243.
[20] McLelland GL, Lee SA, Mcbride HM, et al. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system[J]. J Cell Biol, 2016, 214(3): 275-291.
[21] Andrade-Navarro MA, Sanchez-Pulido L, McBride HM. Mitochondrial vesicles: an ancient process providing new links to peroxisomes [J]. Curr Opin Cell Biol, 2009, 21(4): 560-567.
[22] Braschi E, Goyon V, Zunino R, et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes[J]. Curr Biol, 2010, 20(14):1310-1315.
[23] Park J, Zhao H, Chang S.The unique mechanism of SNX9 BAR domain for inducing membrane tubulati[J]. Mol Cells, 2014, 37(10): 753-758. 
[24] Tang FL, Liu W, Hu JX, et al. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function[J]. Cell Rep, 2015, 12(10): 1631-1643.
[25] Wang W, Ma X, Zhou L, et al. A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson’s disease model[J]. Hum Mol Genet, 2017, 26(4): 781-789.
[26] Wang W, Wang X, Fujioka H, et al. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes[J]. Nat Med, 2016, 22(1): 54-63.
[27] Soubannier V, Rippstein P, Kaufman BA, et al. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo[J]. PLoS One, 2012, 7(12): e52830.
[28] Motley AM, Hettema EH. Yeast peroxisomes multiply by growth and division[J]. J Cell Biol, 2007, 178(3): 399-410.
[29] Sugiura A, Mattie S, Prudent J. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes[J]. Nature, 2017, 542(7640): 251-254.
[30] Agrawal G, Subramani S. De novo peroxisome biogenesis: evolving concepts and conundrumS[J]. Biochim Biophys Acta, 2016, 1863(5): 892-901.
[31] Dimitrov L, Lam SK, Schekman R. The role of the endoplasmic reticulum in peroxisome biogenesis[J]. Cold Spring Harb Perspect Biol, 2013, 5(5): a013243.
[32] Hua R, Kim PK. Multiple paths to peroxisomes: mechanism of peroxisome maintenance in mammals[J]. Biochim Biophys Acta, 2016, 1863(5): 881-891. 
[33] Hua R, Kim PK. Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes [J]. Front Physiol, 2013, 4: 268.
[34] Schrader M, Costello JL, Godinho LF, et al. Proliferation and fission of peroxisomes - An update[J]. Biochim Biophys Acta, 2016, 1863(5): 971-983.
[35] Schrader M, Pellegrini L. The making of a mammalian peroxisome, version 2.0:mitochondria get into the mix[J]. Cell Death and Differ, 2017, 24(7): 1148-1152.
[36] Matheoud D, Sugiura A, Bellemare-Pelletier A, et al. Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation[J]. Cell, 2016,166(2): 314-327.
[37] Baden P, Deleidi M. Mitochondrial antigen presentation: a vacuolar path to autoimmunity in parkinson’s disease[J].Trends Immunol, 2016, 37(11): 719-721.
[38] Roberts RF, Fon EA. Presenting mitochondrial antigens: PINK1, Parkin and MDVs steal the show[J]. Cell Res, 2016, 26(11): 1180-1181.
[39] Abuaita BH, Schultz TL, O’Riordan MX. Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized staphylococcus aureus[J]. Cell Host Microbe, 2018, 24(5): 625-636.
[40] Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease[J]. Prog Neurobiol, 2019, 177: 73-93.
[41] Yao N, Xun QY. Pathology and impact of the locus ceruleus in Parkinson’s disease[J]. Acta Anatomica Sinica, 2014, 45(2): 291-296. (in Chinese)
姚宁, 徐群渊. 蓝斑核在帕金森病发病中的病理改变及其作用[J]. 解剖学报, 2014, 45(2): 291-296.
[42] Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155(3): 629-647.
PDF(864 KB)

Accesses

Citation

Detail

Sections
Recommended

/