Review on the relationship between sphingolipid metabolism and cardiovascular diseases

LI Yao LI Jun-lei SUN Yan-rong YANG Qi-yue WANG Wen-juan WANG Ke QIN Li-hua ZHANG Hai-cheng

Acta Anatomica Sinica ›› 2021, Vol. 52 ›› Issue (1) : 146-151.

PDF(1123 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(1123 KB)
Acta Anatomica Sinica ›› 2021, Vol. 52 ›› Issue (1) : 146-151. DOI: 10.16098/j.issn.0529-1356.2021.01.024
Review

Review on the relationship between sphingolipid metabolism and cardiovascular diseases

  • LI Yao1 LI Jun-lei1 SUN Yan-rong2 YANG Qi-yue2 WANG Wen-juan2 WANG Ke2 QIN Li-hua2*  ZHANG Hai-cheng1*
Author information +
History +

Abstract

As bioactive lipids, sphingolipids participate in the signal transduction of many important physiological processes such as growth and apoptosis. Besides, abnormal levels of sphingolipids were detected in a variety of clinical conditions including hypertension and coronary heart disease, suggesting that sphingolipid metabolism is involved in the occurrence and development of cardiovascular diseases. This paper reviewed the relationship between sphingolipid metabolism with four common cardiovascular diseases, coronary heart disease, hypertension, arrhythmia and heart failure, and the mechanisms involved. What’s more, the prospect of sphingolipid pathway as a potential target for the diagnosis and treatment of cardiovascular diseases is put forward.

Key words

Sphingolipid / Metabolism / Ceramide / Sphingosine-1-phosphate / Cardio-vascular disease

Cite this article

Download Citations
LI Yao LI Jun-lei SUN Yan-rong YANG Qi-yue WANG Wen-juan WANG Ke QIN Li-hua ZHANG Hai-cheng. Review on the relationship between sphingolipid metabolism and cardiovascular diseases[J]. Acta Anatomica Sinica. 2021, 52(1): 146-151 https://doi.org/10.16098/j.issn.0529-1356.2021.01.024

References

[1] Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease [J]. Nature, 2014,510(7503):58-67.
[2] Schiffmann S, Sandner J, Birod K, et al. Ceramide synthases and ceramide levels are increased in breast cancer tissue [J]. Carcinogenesis, 2009,30(5):745-752.
[3] Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: Roles and mechanisms of regulation [J]. Biochem Cell Biol, 2004, 2004,82(1):27-44.
[4] Gillard BK, Clement RG, Marcus DM. Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways [J]. Glycobiology, 1998,8(9):885-890.
[5] Cogolludo A, Villamor E, Perez-Vizcaino F, et al. Ceramide and regulation of vascular tone [J]. Int J Mol Sci, 2019,20(2). pii: E411.
[6] Strub GM, Maceyka M, Hait NC, et al. Extracellular and intracellular actions of sphingosine-1-phosphate [J]. Adv Exp Med Biol, 2010, 688:141-155. 
[7] Nishino S, Yamashita H, Tamori M, et al. Translocation and activation of sphingosine kinase 1 by ceramide-1-phosphate [J]. J Cell Biochem, 2019,120(4):5396-5408.
[8] Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation [J]. Front Biosci (Landmark Ed), 2016, 21:1296-1313. 
[9] Cheng Q, Li X, Wang Y, et al. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro [J]. Acta Pharmacol Sin, 2018,39(4):561-568.
[10] Ahn EH, Lee MB, Seo DJ, et al. Sphingosine induces apoptosis and down-regulation of mycn in pax3-foxo1-positive alveolar rhabdomyosarcoma cells irrespective of tp53 mutation [J]. Anticancer Res, 2018,38(1):71-76.
[11] Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate [J]. Int J Mol Sci, 2015,16(3):5076-5124.
[12] Cao RP, Lu GX, Zhang JSh, et al. Autophagy in hippocampal neurons of sphingomyelin synthase 2 knockout mice [J]. Acta Anatomica Sinica,2012,43 (3): 299-305. (in Chinese)
曹瑞萍, 鲁广秀, 张俊士, 等. 神经鞘磷脂合成酶2基因敲除小鼠海马神经细胞自噬现象[J]. 解剖学报, 2012,43(3):299-305.
[13] Feuerborn R, Becker S, Poti F, et al. High density lipoprotein (hdl)-associated sphingosine 1-phosphate (s1p) inhibits macrophage apoptosis by stimulating stat3 activity and survivin expression [J]. Atherosclerosis, 2017,257:29-37. 
[14] Li S, Chen J, Fang X, et al. Sphingosine-1-phosphate activates the akt pathway to inhibit chemotherapy induced human granulosa cell apoptosis [J]. Gynecol Endocrinol, 2017,33(6):476-479.
[15] Van Brocklyn JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death [J]. Comp Biochem Physiol B Biochem Mol Biol, 2012,163(1):26-36.
[16] Mantovani A, Bonapace S, Lunardi G, et al. Associations between specific plasma ceramides and severity of coronary-artery stenosis assessed by coronary angiography [J]. Diabetes Metab, 2019, 46(2): 30118-30122. 
[17] Spijkers LJ, van den Akker RF, Janssen BJ, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide [J]. PLoS One, 2011,6(7):e21817.
[18] Zhu KF, Wang YM, Zhu JZ, et al. National prevalence of coronary heart disease and its relationship with human development index: a systematic review [J]. Eur J Prev Cardiol, 2016,23(5):530-543.
[19] Cheng JM, Suoniemi M, Kardys Ⅰ, et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the atheroremo-ivus study [J]. Atherosclerosis, 2015,243(2):560-566.
[20] Meeusen JW, Donato LJ, Bryant SC, et al. Plasma ceramides [J]. Arterioscler Thromb Vasc Biol, 2018,38(8):1933-1939.
[21] Peterson LR, Xanthakis Ⅴ, Duncan MS, et al. Ceramide remodeling and risk of cardiovascular events and mortality [J]. J Am Heart Assoc, 2018,7(10). pii: e007931. 
[22] Coban N, Gü?lü Geyik F, Y?ld?rm  ?, et al. [investigating the role of ceramide metabolism-associated cers5 (lass5) gene in atherosclerosis pathogenesis in endothelial cells] [J]. Turk Kardiyol Dern Ars, 2017,45(2):118-125.
[23] Poti F, Simoni M, Nofer JR. Atheroprotective role of high-density lipoprotein (hdl)-associated sphingosine-1-phosphate (s1p) [J]. Cardiovasc Res, 2014,103(3):395-404.
[24] Poti F, Ceglarek U, Burkhardt R, et al. Ski-ii--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (ldl-r-/-) mice on high cholesterol diet [J]. Atherosclerosis, 2015,240(1):212-215.
[25] Bot M, Van Veldhoven PP, de Jager SC, et al. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in ldlreceptor deficient mice [J]. PLoS One, 2013,8(5):e63360.
[26] Kurano M, Yatomi Y. Sphingosine 1-phosphate and atherosclerosis [J]. J Atheroscler Thromb, 2018,25(1):16-26.
[27] Fettel J, Kuhn B, Guillen NA, et al. Sphingosine-1-phosphate (s1p) induces potent anti-inflammatory effects in vitro and in vivo by s1p receptor 4-mediated suppression of 5-lipoxygenase activity [J]. FASEB J, 2019,33(2):1711-1726.
[28] Michaud J, Im DS, Hla T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation [J]. J Immunol, 2010,184(3):1475-1483.
[29] Imeri F, Blanchard O, Jenni A, et al. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of s1p(3) and phosphoinositide 3-kinase [J]. Naunyn Schmiedebergs Arch Pharmacol, 2015,388(12):1283-1292.
[30] Hailemariam TK, Huan C, Liu J, et al. Sphingomyelin synthase 2 deficiency attenuates nfkappab activation [J]. Arterioscler Thromb Vasc Biol, 2008,28(8):1519-1526.
[31] Zhao YR, Dong JB, Li Y, et al. Sphingomyelin synthase 2 over-expression induces expression of aortic inflammatory biomarkers and decreases circulating epcs in apoe ko mice [J]. Life Sci, 2012,90(2122):867-873.
[32] Dang VT, Zhong LH, Huang A, et al. Glycosphingolipids promote pro-atherogenic pathways in the pathogenesis of hyperglycemia-induced accelerated atherosclerosis [J]. Metabolomics, 2018,14(7):92.
[33] Djekic D, Pinto R, Repsilber D, et al. Serum untargeted lipidomic profiling reveals dysfunction of phospholipid metabolism in subclinical coronary artery disease [J]. Vasc Health Risk Manag, 2019,15:123-135.
[34] Alessenko AV, Zateyshchikov DA, Lebedev Acapital Te C, et al. [participation of sphingolipids in the pathogenesis of atherosclerosis] [J]. Kardiologiia, 2019,59(8):77-87.
[35] Diemer FS, Baldew SM, Haan YC, et al. Hypertension and cardiovascular risk profile in a middle-income setting: The helisur study [J]. Am J Hypertens, 2017,30(11):1133-1140.
[36] Spijkers LJ, Janssen BJ, Nelissen J, et al. Antihypertensive treatment differentially affects vascular sphingolipid biology in spontaneously hypertensive rats [J]. PLoS One, 2011,6(12):e29222.
[37] Cantalupo A, Zhang Y, Kothiya M, et al. Nogo-b regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure [J]. Nat Med, 2015,21(9):1028-1037.
[38] Bharath LP, Ruan T, Li Y, et al. Ceramide-initiated protein phosphatase 2a activation contributes to arterial dysfunction in vivo [J]. Diabetes, 2015,64(11):3914-3926.
[39] Kennedy S, Kane KA, Pyne NJ, et al. Targeting sphingosine-1-phosphate signalling for cardioprotection [J]. Curr Opin Pharmacol, 2009,9(2):194-201.
[40] Igarashi J, Michel T. Sphingosine-1-phosphate and modulation of vascular tone [J]. Cardiovasc Res, 2009,82(2):212-220.
[41] Kerage D, Brindley DN, Hemmings DG. Review: Novel insights into the regulation of vascular tone by sphingosine 1-phosphate [J]. Placenta, 2014,35(Suppl):S86-92.
[42] Zhang QJ, Holland WL, Wilson L,et al. Ceramide mediates vascular dysfunction in diet-induced obesity by pp2a-mediated dephosphorylation of the enos-akt complex [J]. Diabetes, 2012,61(7):1848-1859.
[43] Cantalupo A, Gargiulo A, Dautaj E, et al. S1pr1 (sphingosine-1-phosphate receptor 1) signaling regulates blood flow and pressure [J]. Hypertension, 2017,70(2):426-434.
[44] Wu J, Wu Q, Dai W, et al. Serum lipid feature and potential biomarkers of lethal ventricular tachyarrhythmia (lvta) induced by myocardial ion channel diseases: a rat model study [J]. Int J Legal Med, 2018,132(2):439-448.
[45] Wojcik B, Baranowski M, Chabowski A, et al. Effect of atrial pacing on the level of bioactive sphingolipids in the heart ventricles of the rat [J]. J Physiol Pharmacol, 2015,66(3):385-389.
[46] Sugiyama A, Yatomi Y, Ozaki Y, et al. Sphingosine 1-phosphate induces sinus tachycardia and coronary vasoconstriction in the canine heart [J]. Cardiovasc Res, 2000,46(1):119-125.
[47] Egom EE, Kruzliak P, Rotrekl Ⅴ, et al. The effect of the sphingosine-1-phosphate analogue fty720 on atrioventricular nodal tissue [J]. J Cell Mol Med, 2015,19(7):1729-1734.
[48] Koyrakh L, Roman MI, Brinkmann Ⅴ, et al. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel Ⅰ [J]. Am J Transplant, 2005,5(3):529-536.
[49] Yagi Y, Nakamura Y, Kitahara K, et al. Analysis of onset mechanisms of a sphingosine 1-phosphate receptor modulator fingolimod-induced atrioventricular conduction block and qt-interval prolongation [J]. Toxicol Appl Pharmacol, 2014,281(1):39-47.
[50] Bermel RA, Hashmonay R, Meng X, et al. Fingolimod first-dose effects in patients with relapsing multiple sclerosis concomitantly receiving selective serotonin-reuptake inhibitors [J]. Mult Scler Relat Disord, 2015,4(3):273-280.
[51] Metra M, Teerlink JR. Heart failure [J]. Lancet (London, England), 2017,390(10106):1981-1995.
[52] Lemaitre RN, Jensen PN, Hoofnagle A, et al. Plasma ceramides and sphingomyelins in relation to heart failure risk [J]. Cir Heart Fail, 2019,12(7):e005708.
[53] Doehner W, Bunck AC, Rauchhaus M, et al. Secretory sphingomyelinase is upregulated in chronic heart failure: a second messenger system of immune activation relates to body composition, muscular functional capacity, and peripheral blood flow [J]. Eur Heart J, 2007,28(7):821-828.
[54] Polzin A, Piayda K, Keul P, et al. Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease [J]. J Mol Cell Cardiol, 2017,110:35-37.
[55] Deshpande GP, Imamdin A, Lecour S, et al. Sphingosine-1-phosphate (s1p) activates stat3 to protect against de novo acute heart failure (ahf) [J]. Life Sci, 2018,196:127-132.
[56] Cannavo A, Rengo G, Liccardo D, et al. Beta1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (s1pr1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of s1pr1 cardiac gene therapy [J]. Circulation, 2013,128(15):1612-1622.
[57] Takuwa N, Ohkura S, Takashima S, et al. S1p3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species [J]. Cardiovasc Res, 2010,85(3):484-493.
PDF(1123 KB)

Accesses

Citation

Detail

Sections
Recommended

/