Distribution, function and pathologic impacts of cardiac lymphatic vessels#br#

WANG Hai-jie TAN Yu-zhen

Acta Anatomica Sinica ›› 2020, Vol. 51 ›› Issue (3) : 469-472.

PDF(2557 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(2557 KB)
Acta Anatomica Sinica ›› 2020, Vol. 51 ›› Issue (3) : 469-472. DOI: 10.16098/j.issn.0529-1356.2020.03.027
Review

Distribution, function and pathologic impacts of cardiac lymphatic vessels#br#

  • WANG Hai-jie* TAN Yu-zhen
Author information +
History +

Abstract

Drainage of lymph plays an important role in maintaining homeostasis of the myocardium. In heart diseases such as myocardial infarction and heart failure, injure or dysfunction of the lymphatic vessels result  in cardiac lymphedema, leading to cardiac fibrosis, inflammation and cardiac dysfunction. In recent years, more attention has been put on studying relation of cardiac lymphedema with heart diseases and physiopathologic impacts of cardiac lymphangiogenesis. Targeting cardiac lymphangiogenesis is regarded as a feasible therapy for relieving cardiac lymphedema. However, the optimized strategies to sustainedly release growth factors or drugs and to transplant stem/progenitor cells need to be investigated. This article reviews mainly the characteristics of the distribution and function of the cardiac lymphatic vessels, and discusses the pathologic affects of cardiac lymphedema, the mechanisms of cardiac lymphangiogenesis and clinical impacts of promoting cardiac lymphangiogenesis.

Key words

Heart / Lymphatic vessel / Lymphedema / Lymphangiogenesis

Cite this article

Download Citations
WANG Hai-jie TAN Yu-zhen. Distribution, function and pathologic impacts of cardiac lymphatic vessels#br#[J]. Acta Anatomica Sinica. 2020, 51(3): 469-472 https://doi.org/10.16098/j.issn.0529-1356.2020.03.027

References

[1]  Wang HJ, Tan YZh. Lymphangiogenesis and significance in pathogenesis and treatment of the related diseases[J]. Acta Anatomica Sinica, 2007, 38(2): 250-252. (in Chinese)
王海杰,谭玉珍.淋巴管新生及其在疾病发生和治疗中的意义[J].解剖学报,2007,38(2):250-252. 
[2] Aspelund A, Robciuc MR, Karaman S, et al. Lymphatic system in cardiovascular medicine[J]. Circ Res, 2016, 118(3): 515-530.
[3] Norman S, Riley PR. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease[J]. Clin Ana, 2016, 29(3): 305-315.
[4] Loukas M, Abel N, Shane Tubbs R, et al. The cardiac lymphatic system[J]. Clin Anat, 2011, 24(6): 684-691.
[5] Wang HJ, Tan YZh. Practical Anatomy of the Heart[M]. Shanghai: Fudan University Press, 2007: 134-136. (in Chinese)
王海杰,谭玉珍.实用心脏解剖学[M].上海:复旦大学出版社,2007:134-136. 
[6] Huang LH, Lavine KJ, Randolph GJ. Cardiac lymphatic vessels, transport, and healing of the infarcted heart[J]. JACC, 2017, 2(4): 477-483.
[7] Miller AJ. The grossly invisible and generally ignored lymphatics of the mammalian heart[J]. Med Hypotheses, 2011, 76(4): 604-606.
[8] Kong XQ, Wang LX, Kong DG. Cardiac lymphatic interruption is a major cause for allograft failure after cardiac transplantation[J]. Lympha Res Biol, 2007, 5(1): 45-47.
[9] Lupinski RW. Aortic fat pad and atrial fibrillation: cardiac lymphatics revisited[J]. ANZ J Surg, 2009, 79(12): 70-74.
[10] Frangogiannis NG. Regulation of the inflammatory response in cardiac repair[J]. Circ Res, 2012, 110 (1): 159-173.
[11] Vieira JM, Norman S, Villa Del Campo C, et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction[J]. J Clin Invest, 2018, 128(8): 3402-3412.
[12] Feola M, Lefer AM. Alterations in cardiac lymph dynamics in acute myocardial ischemia in dogs[J]. J Surg Res, 1977, 23(5): 299-305.
[13] Henri O, Pouehe C, Houssari M, et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction[J]. Circulation, 2016, 133(15): 1484-1497.
[14] Kholová I, Dragneva G, Cermáková P, et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterolrich and calcified atherosclerotic lesions[J]. Eur J Clin Invest, 2011, 41(5): 487-497.
[15] Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury[J]. Nature, 2015, 522: 62-67.
[16] Ishikawa Y, Akishima-Fukasawa Y, Ito K, et al. Lymphangiogenesis in myocardial remodelling after infarction[J]. Histopathology, 2007, 51(3): 345-353.
[17] Vuorio T, Nurmi H, Moulton K, et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1162-1170.
[18] Wang QL, Wang HJ, Li ZH, et al. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium[J]. J Cell Mol Med, 2017, 21(9): 1751-1766.
[19] Trincot CE, Xu W, Zhang H, et al. Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via connexin 43[J]. Circ Res, 2019, 124(1): 101-113.
[20] Shimizu Y, Polavarapu R, Eskla KL, et al. Impact of lymphangiogenesis on cardiac remodeling after ischemia and reperfusion injury[J]. J Am Heart Assoc, 2018, 7(19): e009565.
[21] Zhang HF, Wang YL, Tan YZ, et al. Enhancement of cardiac lymphangiogenesis by transplantation of CD34+VEGFR-3+ endothelial progenitor cells and sustained release of VEGFC[J]. Basic Res Cardiol, 2019, 114:43. 
[22] Karaman S, Leppanen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease[J]. Development, 2018, 145(14): dev151019.
[23] Cao R, Eriksson A, Kubo H, et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability[J]. Circ Res, 2004, 94(5): 664-670.
[24] Kazenwadel J, Harvey NL. Lymphatic endothelial progenitor cells: origins and roles in lymphangiogenesis[J]. Curr Opin Immunol, 2018, 53: 81-87.
[25] Cimini M, Cannata A, Pasquinelli G, et al. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium[J]. PLoS One, 2017, 12(3): e0173927.
[26] Tan YZ, Wang HJ, Zhang MH, et al. CD34+VEGFR-3+ progenitor cells have a potential to differentiate towards lymphatic endothelial cells[J]. J Cell Mol Med, 2014, 18 (3): 422-433.
[27] Zhang MH, Wang HJ, Tan YZh, et al. Differentiation and biological characteristics of the lymphatic endothelial progenitor cells isolated from umbilical cord blood[J]. Acta Anatomica Sinica, 2006, 37(4): 473-478. (in Chinese)
张美华,王海杰,谭玉珍,等.人脐带血淋巴管内皮祖细胞的分化及其生物学特征[J].解剖学报,2006,37(4):473-478. 
[28] Wang GD, Tan YZ, Wang HJ, et al. Autophagy promotes degradation of polyethyleneiminealginate nanoparticles in endothelial progenitor cells[J]. Int J Nanomed, 2017, 12: 6661-6675.
[29] Liu R, Tan YZh, Wang HJ, et al. Sorling of lymphatic endothelial progenitor cells from canine peripheral blood and their differentiation induction towards endothelial cell[J]. Chinese Journal of Hematology, 2007, 28(3): 169-173. (in Chinese)
刘锐,谭玉珍,王海杰,等.犬外周血淋巴管内皮祖细胞的分选及其向内皮细胞的诱导分化研究[J].中华血液学杂志,2007,28(3):169-173. 
[30] Ao H, Tan YZh, Wang HJ, et al. Release of soluble VEGFR-3 from lymphatic endothelial progenitor cells after gene transfection[J]. Acta Laboratorium Animalis Scientia Sinica, 2009, 17(4): 252-257. (in Chinese)
敖红,谭玉珍,王海杰,等.VEGFR3基因转染淋巴管内皮祖细胞后可溶性VEGFR-3蛋白的分泌[J].中国实验动物学报,2009,17(4):252-257. 
[31] Li T, Wang GD, Tan YZ, et al. Inhibition of lymphangiogenesis of endothelial progenitor cells with VEGFR-3 siRNA delivered with PEI-alginate nanoparticles[J]. Int J Biol Sci, 2014, 10(2): 160-170.
[32] Pascual-Gil S, Garbayo E, Díaz-Herráez P, et al. Heart regeneration after myocardial infarction using synthetic biomaterials[J]. J Control Release, 2015, 203:23-38.
[33] Alitalo K. The lymphatic vasculature in disease[J]. Nat Med, 2011, 17(11): 1371-1380.
[34] Wang HJ, Tan YZ, Pober JS. The architecture of the lymphatic vessels in the tissues revealed with whole-mount immunostaining[J]. Acta Anatomica Sinica, 2016, 47(3): 421-424. (in Chinese)
王海杰,谭玉珍,Pober JS.整片组织免疫染色显示淋巴管构筑[J].解剖学报,2016,47(3):421-424. 
[35] Vuorio T, Tirronen A, Ylä-Herttuala S. Cardiac lymphatics-A new avenue for therapeutics[J]. Trends Endocrinol Metab, 2017, 28(4): 285-296.

Funding

National Natural Science Foundation of China
PDF(2557 KB)

Accesses

Citation

Detail

Sections
Recommended

/