Inhibitory effect of soybean isoflavone on benign prostatic hyperplasia and its mechanism

XU Guang-chi LIU Tao DONG Bo MENG Yin

Acta Anatomica Sinica ›› 2018, Vol. 49 ›› Issue (2) : 185-190.

PDF(326 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(326 KB)
Acta Anatomica Sinica ›› 2018, Vol. 49 ›› Issue (2) : 185-190. DOI: 10.16098/j.issn.0529-1356.2018.02.008
Cell and Molecules Biology

Inhibitory effect of soybean isoflavone on benign prostatic hyperplasia and its mechanism

  • XU Guang-chi* LIU Tao DONG Bo MENG Yin
Author information +
History +

Abstract

Objective To observe the effects of soy isoflavones (SI) on sex hormones, growth factors and apoptosis related genes in benign prostatic hyperplasia (BPH) rats, and to explore the prevention and mechanism of SI on BPH. Methods One hundred healthy adult male SD rats (SPF) were randomly divided into the normal control (NC) group (n=20), BPH model group (n=20), low-dose of SI group (n=20), medium-dose of SI group (n=20) and high-dose of SI group (n=20). After intragastric administration for 4 weeks, the rats were anesthetized and the abdominal aorta blood collected for preparing serum. The prostate tissues were obtained from the rats after blood collection and weighed, and the prostatic indexes (PI) were calculated. Enzyme linked immunosorbent assay (ELISA) was performed to detect the levels of estradiol (E2) and testosterone (T) in serum of the rats. The expressions of Fas, FasL, Bax, Bcl-2, epidermal growth factor (EGF) and EGF receptor (EGFR) were detected by Western blotting. Results Compared with the NC group, the wet weight of prostate and PI of rats in the BPH group increased obviously (P<0.05), the levels of E2 and T in serum enhanced significantly (P<0.05), the expressions of FasL, Bcl-2, EGF and EGFR in the prostate tissues up-regulated evidently (P<0.05), while the expressions of Fas and Bax in the prostate tissues down-regulated evidently (P<0.05). Compared with the BPH group, the wet weight of prostate and PI of rats in the medium-dose of SI and high-dose of SI groups decreased obviously (P<0.05), the levels of E2 and T in serum decreased significantly (P<0.05), the expressions of FasL, Bcl-2, EGF and EGFR in the prostate tissues down-regulated evidently (P<0.05), while the expressions of Fas and Bax in the prostate tissues up-regulated evidently (P<0.05). In addition, the changes of all the above mentioned indexes in the medium-dose of SI group showed more significant than that in the low dose of SI and high dose of SI groups (P<0.05). Conclusion SI has an inhibitory effect on BPH, especially with the medium dose. The mechanism may be related to regulating the level of sex hormones, the expression of growth factor and its receptors, as well as the expression of apoptosis genes.

Key words

Benign prostatic hyperplasia / Soybean isoflavone / Sex hormone / Euzymelinked immunosorbent assay / Western blotting / Rat

Cite this article

Download Citations
XU Guang-chi LIU Tao DONG Bo MENG Yin. Inhibitory effect of soybean isoflavone on benign prostatic hyperplasia and its mechanism[J]. Acta Anatomica Sinica. 2018, 49(2): 185-190 https://doi.org/10.16098/j.issn.0529-1356.2018.02.008

References

[1] Vuichoud C, Loughlin KR. Benign prostatic hyperplasia: epidemiology, economics and evaluation [J]. Can J Urol, 2015, 22(5 Suppl 1):1-6.
[2] Cantlay A, Raghallaigh HN. Benign prostatic hyperplasia [J]. Innovait, 2015, 8(4):238-245.
[3] Zhu Sh, Wu JH, Sun ZY. Advances in the study of the pathogenesis of benign prostatic hyperplasia [J]. Journal of Toxicology, 2013, 27(5):387-390. (in Chinese)
朱圣, 吴建辉, 孙祖越. 良性前列腺增生发病机制的研究进展[J]. 毒理学杂志, 2013, 27(5):387-390. 
[4] Guo XH, Dai XM, Zhang B. Advances on the study of soybean isoflavones in biological activity and toxicity [J]. Soybean Science, 2011, 30(4):693-696. (in Chinese)
郭小虎, 代晓曼, 张波. 大豆异黄酮的生物活性及毒理学研究进展[J]. 大豆科学, 2011, 30(4):693-696. 
[5] Zhu JL, Chen Y, Li YCh, et al. Improvement effect of soy isoflavones(SI) on serum hormone disorders and benign prostatic hyperplasia(BPH) induced by nonylphenol(NP) in rat [J]. Journal of Fujian Medical Unirersity, 2012, 46(4):231-234. (in Chinese)
朱建林, 陈昱, 李昱辰, 等. 大豆异黄酮对壬基酚所致大鼠血清性激素紊乱及前列腺增生的改善作用[J]. 福建医科大学学报, 2012, 46(4):231-234. 
[6] Ren GF, Yuan Q, Yang AQ, et al. Morphological and morphometric study on the effect of soybean isoflavone on hyperplastic prostate in Rats [J]. Acta Laboratorium Animalis Scientia Sinica, 2010, 18(1):24-27. (in Chinese)
任国峰, 袁泉, 杨爱青, 等. 形态学与形态计量学观察大豆异黄酮对前列腺增生大鼠的作用[J]. 中国实验动物学报, 2010, 18(1):24-27. 
 [7] Chu YK, Yang W, Ran LW, et al. Establishment of prostatic hyperplasia model of rats [J]. Journal of Guiyang Medical College, 2014, 39(5):657-659. (in Chinese)
楚元奎, 杨文, 冉林武, 等. 前列腺增生大鼠模型的建立[J]. 贵阳医学院学报, 2014, 39(5):657-659. 
[8] Liu ZhQ, Long J, Shi FJ, et al. Correlation between serum neutral hormone levels and prostate volume in male patients [J]. Chinese Journal of Andrology, 2013, 27(2):53-55. (in Chinese)
刘志权, 龙娟, 史芳菊, 等. 男性患者血清中性激素水平与前列腺体积的相关性研究[J]. 中国男科学杂志, 2013, 27(2):53-55. 
[9] Juodziukyniene N, Aniuliene A. Histomorphometric study of the canine prostate during ageing and in cases of benign prostate hyperplasia [J]. J Vet Res, 2016, 60(1):91-97.
[10] Wu JH, Jiang XR, Liu GM, et al. Oral exposure to low-dose bisphenol A aggravates testosterone-induced benign hyperplasia prostate in rats [J]. Toxicol Ind Health, 2011, 27(9):810-819.
[11] Pearl CA, Mason H, Roser JF. Immunolocalization of estrogen receptor alpha, estrogen receptor beta and androgen receptor in the pre-, peri-and post-pubertal stallion testis [J]. Anim Reprod Sci, 2011, 125(1-4):103-111.
[12] Huang ChR, Chen Q, Zhang ChY, et al. Estrogen and estrogen receptor and benign prostatic hyperplasia [J]. Chinese Journal of Andrology, 2015, 29(8):62-65. (in Chinese)
黄成然, 陈钱, 张春阳, 等. 雌激素及雌激素受体与良性前列腺增生症[J]. 中国男科学杂志, 2015, 29(8):62-65. 
[13] Zhang R, Jiang YB, Yang YR, et al. Soybean isoflavones: characteristics and feed application [J]. Acta Zoonutrimenta Sinica, 2011, 23(11):1884-1890. (in Chinese)
张蕊, 姜义宝, 杨玉荣, 等. 大豆异黄酮的特性及其应用研究进展[J]. 动物营养学报, 2011, 23(11):1884-1890. 
[14] Zhu DN, Wang L, Wang ST, et al. Research progress of phytoestrogen [J]. Chinese Traditional and Herbal Drugs, 2012, 43(7):1422-1429. (in Chinese)
朱迪娜, 王磊, 王思彤, 等. 植物雌激素的研究进展[J]. 中草药, 2012, 43(7):1422-1429. 
[15] Yu Q, Wang WW, Li AL, et al. The study of the effects of soybean isoflavone on antitioxidation and bone morphology in ovariectomizerd rats [J]. Acta Anatomica Sinica, 2007, 38(2):222-225. (in Chinese)
余清, 王文蔚, 李安乐,等. 大豆异黄酮对去卵巢大鼠抗氧化及骨形态学影响的研究[J]. 解剖学报, 2007, 38(2):222-225. 
[16] Asiedu B, Anang Y, Nyarko A, et al. The role of sex steroid hormones in benign prostatic hyperplasia [J]. Aging Male, 2017, 20(1):17-22.
[17] Mclaren ID, Jerde TJ, Bushman W. Role of interleukins, IGF and stem cells in BPH [J]. Differentiation, 2011, 82(4-5):237-243.
[18] Ning ZhCh, Shi JD, Zhou Y, et al. EGR1 Promotes proliferation in prostatic hyperplasia epithelial BPH-1 cells [J]. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(8):751-758. (in Chinese)
宁召臣, 石建党, 周颖, 等. EGR1促进前列腺增生上皮细胞系BPH-1的增殖[J]. 中国生物化学与分子生物学报, 2013, 29(8):751-758. 
[19] Grabowska MM, Sandhu B, Day ML. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells [J]. Cell Signal, 2012, 24(2):532-538.
[20] Yao SX, Li L, Yang XQ, et al. Expression and significance of EGFR, Her-2 and TOPOⅡ in esophageal canceration course [J]. Cancer Research and Clinic, 2011, 23(5):303-306.  (in Chinese)
姚苏霞, 李丽, 杨宣琴, 等. 表皮生长因子受体、人类表皮生长因子2、拓扑异构酶Ⅱ在食管上皮癌变过程中的表达及意义[J]. 肿瘤研究与临床, 2011, 23(5):303-306. 
[21] Quiles MT, Arbós MA, Fraga A, et al. Antiproliferative and apoptotic effects of the herbal agent Pygeum africanum on cultured prostate stromal cells from patients with benign prostatic hyperplasia (BPH) [J]. Prostate, 2010, 70(10):1044-1053.
[22] Saxena N, Yadav P, Kumar O. The Fas/Fas ligand apoptotic pathway is involved in abrin-induced apoptosis [J]. Toxicol Sci, 2013, 135(1):103-118.
[23] Morales-Cano D, Calvio E, Rubio V, et al. Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition [J]. Exp Toxicol Pathol, 2013, 65(7-8):1101-1108.
PDF(326 KB)

Accesses

Citation

Detail

Sections
Recommended

/