Progress of the function and mechanism of protein kinase A RⅡβ

DING Yu-jing JIN Xing LIU Jun-xiu MA Fu-rong

Acta Anatomica Sinica ›› 2017, Vol. 48 ›› Issue (6) : 761-765.

PDF(256 KB)
Welcome to visit Acta Anatomica Sinica! Today is Chinese
PDF(256 KB)
Acta Anatomica Sinica ›› 2017, Vol. 48 ›› Issue (6) : 761-765. DOI: 10.16098/j.issn.0529-1356.2017.06.022
Review

Progress of the function and mechanism of protein kinase A RⅡβ

  • DING Yu-jing JIN Xing LIU Jun-xiu MA Fu-rong*
Author information +
History +

Abstract

Protein kinase A (PKA) exists in mammalian cells as an inactive tetrameric holoenzyme composed of a regulatory (R) subunit dimer and two catalytic (C) subunits. There are four isoforms of the R subunits, RIα, RIβ, RⅡα,and RⅡβ. Each of them has special physicochemical property. RⅡβ subunit contains an N-terminal dimerization/docking domain. PKA is anchored to specific sites in the cell by binding of an adenosine kinase-anchoring protein amphipathic helix to the dimerization/docking domain. At the C terminus there are two tandem highly conserved cyclic nucleotide-binding domains, which relate to depolymerization and activation of the holoenzyme. The heterodimers are anchored together by an interface created by the β4-β5 loop in the RⅡβ subunit. In cells the inactive RⅡβ2:C2 holoenzyme once formed, it may be primed to have its R subunits autophosphory when high availability of cytoplasmic MgATP is given. RⅡβ expression is tissue specific,mainly in the brain, adipose tissue and endocrine organs. Bioinormatics analysis has showed that the sequence of RⅡβis significantly different from other three R subunit isoforms. The big difference indicates that PKA RⅡβ may have special biological function. Therefore many researchers focus on the function and mechanism of PKA RⅡβ.

Key words

Protein kinase A / Regulatory subunit / Allosteric effect / Phosphorylation

Cite this article

Download Citations
DING Yu-jing JIN Xing LIU Jun-xiu MA Fu-rong. Progress of the function and mechanism of protein kinase A RⅡβ[J]. Acta Anatomica Sinica. 2017, 48(6): 761-765 https://doi.org/10.16098/j.issn.0529-1356.2017.06.022

References

[1]Zhang P, Smith-Nguyen EV, Keshwani MM, et al. Structure and allostery of the PKA RII beta tetrameric holoenzyme[J]. Science,2012,335(6069):712-716.
[2]Kim C, Vigil D, Anand G, et al. Structure and dynamics of PKA signaling proteins[J]. Eur J Cell Biol,2006,85(7):651-654.
[3]Shemarova IV. cAMP-dependent signal pathways in unicellular eukaryotes[J]. Crit Rev Microbiol,2009,35(1):23-42.
[4]Wojtal KA, Hoekstra D, van Ijzendoorn SC. cAMP-dependent protein kinase A and the dynamics of epithelial cell surface domains: moving membranes to keep in shape[J]. Bioessays,2008,30(2):146-155.
[5]Blumenthal DK, Copps J, Smith-Nguyen EV, et al. The roles of the RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIbeta protein kinase A: a small angle x-ray and neutron scattering study[J]. J Biol Chem,2014,289(41):28505-28512.
[6]Colledge M, Scott JD. AKAPs: from structure to function[J]. Trends Cell Biol,1999,9(6):216-221.
[7]Cummings DE, Brandon EP, Planas JV, et al. Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A[J]. Nature,1996,382(6592):622-626.[8]Ilouz R, Bubis J, Wu J, et al. Localization and quaternary structure of the PKA RIbeta holoenzyme[J]. Proc Natl Acad Sci USA,2012,109(31):12443-12448.
[9]Vigil D, Blumenthal DK, Taylor SS, et al. Solution scattering reveals large differences in the global structures of type Ⅱ protein kinase A isoforms[J]. J Mol Biol,2006,357(3):880-889.
[10]Kinderman FS, Kim C, von Daake S, et al. A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase[J]. Mol Cell,2006,24(3):397-408.
[11]Scott JD, Dessauer CW, Tasken K. Creating order from chaos: cellular regulation by kinase anchoring[J]. Annu Rev Pharmacol Toxicol,2013,53(1):187-210.
[12]Diskar M, Zenn HM, Kaupisch A, et al. Molecular basis for isoform-specific autoregulation of protein kinase A[J]. Cell Signal,2007,19(10):2024-2034.
[13]Martin BR, Deerinck TJ, Ellisman MH, et al. Isoform-specific PKA dynamics revealed by dye-triggered aggregation and DAKAP1alpha-mediated localization in living cells[J]. Chem Biol,2007,14(9):1031-1042.
[14]Canaves JM, Taylor SS. Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family[J]. J Mol Evol,2002,54(1):17-29.
[15]Kim C, Cheng CY, Saldanha SA, et al. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation[J]. Cell,2007,130(6):1032-1043.
[16]Wu J, Brown SH, von Daake S, et al. PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity[J]. Science,2007,318(5848):274-279.
[17]Herberg FW, Taylor SS, Dostmann WR. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase[J]. Biochemistry,1996,35(9):2934-2942.
[18]Zhang P, Knape MJ, Ahuja LG, et al. Single turnover autophosphorylation cycle of the PKA RⅡbeta oloenzyme[J]. PLoS Biol,2015,13(7):e1002192.
[19]Oliveria SF, Dell’Acqua ML, Sather WA. AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling[J]. Neuron,2007,55(2):261-275.
[20]Rangel-Aldao R, Rosen OM. Dissociation and reassociation of the phosphorylated and nonphosphorylated forms of adenosine 3’:5’-monophosphate-dependent protein kinase from bovine cardiac muscle[J]. J Biol Chem,1976,251(11):3375-3380.
[21]Amieux PS, Cummings DE, Motamed K, et al. Compensatory regulation of RIalpha protein levels in protein kinase A mutant mice[J]. J Biol Chem,1997,272(7):3993-3998.
[22]Schreyer SA, Cummings DE, Mcknight GS, et al. Mutation of the RⅡbeta subunit of protein kinase A prevents diet-induced insulin resistance and dyslipidemia in mice[J]. Diabetes,2001,50(11):2555-2562.
[23]Enns LC, Morton JF, Treuting PR, et al. Disruption of protein kinase A in mice enhances healthy aging[J]. PLoS One,2009,4(6):e5963.
[24]Rosen ED, Macdougald OA. Adipocyte differentiation from the inside out[J]. Nat Rev Mol Cell Biol,2006,7(12):885-896.
[25]Farmer SR. Transcriptional control of adipocyte formation[J]. Cell Metab,2006,4(4):263-273.
[26]Peverelli E, Ermetici F, Corbetta S, et al. PKA regulatory subunit R2B is required for murine and human adipocyte differentiation[J]. Endocr Connect,2013,2(4):196-207.
[27]Cummings DE, Brandon EP, Planas JV, et al. Genetically lean mice result from targeted disruption of the RⅡ beta subunit of protein kinase A[J]. Nature,1996,382(6592):622-626.
[28]Meier MK, Alig L, BurgiSaville ME, et al. Phenethanolamine derivatives with calorigenic and antidiabetic qualities[J]. Int J Obes,1984,8 (Suppl 1):215-225.
[29]Dolan JA, Muenkel HA, Burns MG, et al. Beta-3 adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines[J]. J Pharmacol Exp Ther,1994,269(3):1000-1006.
[30]Ek I, Arner P, Ryden M, et al. A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance[J]. Diabetes,2002,51(2):484-492.
[31]Newhall KJ, Cummings DE, Nolan MA, et al. Deletion of the RⅡbeta-subunit of protein kinase A decreases body weight and increases energy expenditure in the obese, leptin-deficient ob/ob mouse[J]. Mol Endocrinol,2005,19(4):982-991.
[32]Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice[J]. Science,1995,269(5223):540-543.
[33]Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene[J]. Science,1995,269(5223):543-546.
[34]Kirk EA, Moe GL, Caldwell MT, et al. Hyper-and hypo-responsiveness to dietary fat and cholesterol among inbred mice: searching for level and variability genes[J]. J Lipid Res,1995,36(7):1522-1532.
[35]Del Gbbo A, Peverelli E, Treppiedi D, et al. Expression of protein kinase A regulatory subunits in benign and malignant human thyroid tissues: a systematic review[J]. Exp Cell Res,2016,346(1):85-90.
[36]Almeida MQ, Stratakis CA. How does cAMP/protein kinase A signaling lead to tumors in the adrenal cortex and other tissues[J]? Mol Cell Endocrinol,2011,336(1-2):162-168.
[37]Mantovani G, Lania AG, Bondioni S, et al. Different expression of protein kinase A (PKA) regulatory subunits in cortisol-secreting adrenocortical tumors: relationship with cell proliferation[J]. Exp Cell Res,2008,314(1):123-130.
[38]Basso F, Rocchetti F, Rodriguez S, et al. Comparison of the effects of PRKAR1A and PRKAR2B depletion on signaling pathways, cell growth, and cell cycle control of adrenocortical cells[J]. Horm Metab Res,2014,46(12):883-888.
[39]Ferraro FR, Sparta DR, Knapp DJ, et al. Increased consumption but not operant self-administration of ethanol in mice lacking the RIIbeta subunit of protein kinase A[J]. Alcohol Clin Exp Res,2006,30(5):825-835.
[40]Thiele TE, Willis B, Stadler J, et al. High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice[J]. J Neurosci,2000,20(10):C75.
[41]Fee JR, Sparta DR, Knapp DJ, et al. Predictors of high ethanol consumption in RIIbeta knock-out mice: assessment of anxiety and ethanol-induced sedation[J]. Alcohol Clin Exp Res,2004,28(10):1459-1468.
[42]Belcher SM, Le HH, Spurling L, et al. Rapid estrogenic regulation of extracellular signal-regulated kinase 1/2 signaling in cerebellar granule cells involves a G protein-and protein kinase A-dependent mechanism and intracellular activation of protein phosphatase 2A[J]. Endocrinology,2005,146(12):5397-5406.
[43]Thiele TE, Sparta DR, Hayes DM, et al. A role for neuropeptide Y in neurobiological responses to ethanol and drugs of abuse[J]. Neuropeptides,2004,38(4):235-243.
[44]Shingo AS, Kito S. Estradiol induces PKA activation through the putative membrane receptor in the living hippocampal neuron[J]. J Neural Transm (Vienna),2005,112(11):1469-1473.
[45]Planas JV, Cummings DE, Idzerda RL, et al. Mutation of the RIIbeta subunit of protein kinase A differentially affects lipolysis but not gene induction in white adipose tissue[J]. J Biol Chem,1999,274(51):36281-36287.
PDF(256 KB)

Accesses

Citation

Detail

Sections
Recommended

/