欢迎访问《解剖学报》官方网站!今天是 English
组织学胚胎学发育生物学

 斑马鱼视网膜微细结构及发育特征

  • 冯丽萍 ,
  • 徐伊琳 ,
  • 陈珣 ,
  • 刘大海 ,
  • 王军勇 ,
  • 王晓瑛 ,
  • 林金杏
展开
  • 1. 上海实验动物研究中心,上海 201203; 2. 复旦大学附属眼耳鼻喉科医院眼科,上海 200031; 3. 复旦大学上海市卫健委近视眼重点实验室,上海 200031;   4.上海市眼视光学研究中心,上海 200031; 5. 上海必凯科翼生物科技有限公司, 上海 201203

收稿日期: 2022-11-21

  修回日期: 2023-04-04

  网络出版日期: 2024-02-06

基金资助

斑马鱼替代高等动物建立新型近视模型及其屈光发育机制的研究

 Retinal microstructure and developmental characteristics in Zebrafish

  • FENG Li-Ping ,
  • XU Yi-Lin ,
  • CHEN Xun ,
  • LIU Da-Hai ,
  • WANG Jun-Yong ,
  • WANG Xiao-Ying ,
  • LIN Jin-Xing
Expand
  • 1.Shanghai Laboratory Animal Research Center, Shanghai 201203, China;2.Department of Ophthalmology, Eye Ear Nose and Throat Hospital, Fudan University,     Shanghai 200031, China; 3.National Health Commission Key Laboratory of Myopia of Fudan University, Shanghai 200031, China;   4.Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200031, China; 5.Shanghai BK/KY Biotechnology Co. Ltd, Shanghai 201203, China

Received date: 2022-11-21

  Revised date: 2023-04-04

  Online published: 2024-02-06

摘要

目的  探讨斑马鱼眼球和视网膜的微细结构及不同发育阶段的形态特征,为其作为视觉研究模型奠定基础。   方法  分别选取不同周龄的8组斑马鱼,每组各6条,共48条。利用光学显微镜和透射电子显微镜观察不同发育阶段的斑马鱼眼球结构,并测量视网膜各层厚度,分析其时空发育模式。从显微结构及超微结构上观察视网膜中各种细胞形态特征及神经连接方式,尤其是视杆细胞和视锥细胞的结构差异。   结果  斑马鱼视网膜可分为色素上皮层、视杆视锥层、外界膜、外核层、外网层、内核层、内网层、神经节细胞层、神经纤维层和内界膜等10层。与视锥细胞相比,视杆细胞的细胞核更小且电子密度更高。感光细胞终足整齐地排列在外网层,与水平细胞和双极细胞形成神经连接,并在其内观察到多条突触带。在斑马鱼视网膜中,最早发育的是神经节细胞层和内核层,随着斑马鱼的生长发育,视杆视锥层和色素上皮层厚度逐渐增长,10周左右视网膜的结构基本发育完成。   结论  斑马鱼视网膜形态结构典型,分层明显,神经细胞高度分化,外网层神经连接丰富。斑马鱼眼球发育特征与大多数哺乳动物相似。

本文引用格式

冯丽萍 , 徐伊琳 , 陈珣 , 刘大海 , 王军勇 , 王晓瑛 , 林金杏 .  斑马鱼视网膜微细结构及发育特征[J]. 解剖学报, 2024 , 55(1) : 105 -112 . DOI: 10.16098/j.issn.0529-1356.2024.01.015

Abstract

Objective  To study the microscopic structure and morphological characteristics of Zebrafish eyeball and retina at different developmental stages, and to lay a foundation for visual research model.    Methods  Select eight groups of zebrafish at different ages, with six fish in each group, 48 fish in total. Optical microscopy and transmission electron microscopy were used to observe the eyeball structure of Zebrafish at different developmental stages, and the thickness of retinal each layer was measured to analyze the temporal and spatial development pattern. The morphological characteristics of various cells in the retina and the way of nerve connection were observed from the microscopic and ultrastructural aspects, especially the structural differences between rod cells and cone cells.    Results  The retina of Zebrafish can be divided into ten layers including retinal pigment epithelial layer, rod cells and cone cells layer, outer limiting membrane, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer, ganglion cell layer, nerve fiber layer, inner limiting membrane. Rod cells had a smaller nucleus and a higher electron density than cone cells. Photoreceptor terminals were neatly arranged in the outer plexiform layer, forming neural connections with horizontal cells and bipolar cells, and several synaptic ribbons are clearly visible within them. In Zebrafish retina, ganglion cell layer and inner plexiform layer are the earliest developed. With the growth and development of Zebrafish, the thickness of rod cells and cone cells layer and retinal pigment epithelial layer gradually increases, and the retinal structure was basically developed in about 10 weeks.    Conclusion  The retinal structure of Zebrafish is typical, with obvious stratification and highly differentiated nerve cells. There are abundant neural connections in the outer plexiform layer. The ocular development characteristics of Zebrafish are similar to those of most mammals.

参考文献

 [1]Bilotta J, Saszik S, Sutherland SE. Rod contributions to the electroretinogram of the dark-adapted developing zebrafish [J]. Dev Dyn, 2001, 222(4):564-570.
 [2]Lakkaraju A, Umapathy A, Tan LX, et al. The cell biology of the retinal pigment epithelium [J]. Prog Retin Eye Res, 2020,e4:100846.
 [3]Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina [J]. Nature reviews, 2001,2(2):109-118.
 [4]Harada T, Harada C, Parada LF. Molecular regulation of visual system development: more than meets the eye [J]. Genes Dev, 2007,21(4):367-378.
 [5]Grigoryan EN. Self-organization of the retina during eye development, retinal regeneration in vivo, and in retinal 3D organoids in vitro [J]. Biomedicines, 2022,10(6):1458.
 [6]Zhao XF, Ellingsen S, Fjose A. Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina [J]. BMC Neurosci, 2009,10:107.
 [7]Miesfeld JB, Brown NL. Eye organogenesis: a hierarchical view of ocular development [J]. Curr Top Dev Biol, 2019,132:351-393.
 [8]Zhang ShX, Li H, Wang ZR. Retino-tectal structure in zebrafish (brachy danio rerio) [J]. Acta Anatomica Sinica, 2002,33(1),108-110. (in Chinese)
张胜祥, 李鹤, 王子仁. 斑马鱼视网膜-顶盖系统的组织学研究[J]. 解剖学报, 2002,33(1),108-110.
 [9]Mangrum W, Dowling J, Cohen E. A morphological classification of ganglion cells in the zebrafish retina [J]. Vis Neurosci, 2002,19(6):767-779.
 [10]Connaughton VP, Nelson R. Ganglion cells in larval zebrafish retina integrate inputs from multiple cone types [J]. J Neurophysiol, 2021,126(4):1440-1454.
 [11]Connaughton VP, Graham D, Nelson R. Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina [J]. J Comp Neurol, 2004,477(4):371-385.
 [12]Sand A, Schmidt TM, Kofuji P. Diverse types of ganglion cell photoreceptors in the mammalian retina [J]. Prog Retin Eye Res, 2012,31(4):287-302.
 [13]Kölsch Y, Hahn J, Sappington A, et al. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior [J]. Neuron, 2021,109(4):645-662.
 [14]Nagashima M, Barthel LK, Raymond PA. A self-renewing division of zebrafish Muller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons [J]. Development, 2013,140(22):4510-4521.
 [15]Powell C, Cornblath E, Elsaeidi F, et al. Zebrafish Muller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons [J]. Sci Rep, 2016,6:24851.
 [16]Zhang ShQ, Liu D, Xu H. Retinal regeneration in zebrafish [J]. Acta Anatomica Sinica, 2015,46(5):715-719. (in Chinese)
张书强, 刘东, 徐绘. 斑马鱼视网膜再生研究进展[J]. 解剖学报, 2015,46(5):715-719.
 [17Chen WX, Jin M, Zhang X. Research progress on visual impairment and optic nerve regeneration in zebrafish[J]. International Eye Science, 2021,21(10):1711-1715. (in Chinese)
陈维昕, 金铭, 张旭. 斑马鱼视觉损伤和视神经再生的研究进展[J]. 国际眼科杂志, 2021,21(10):1711-1715.
 [18]Sun C, Galicia C, Stenkamp DL. Transcripts within rod photoreceptors of the zebrafish retina [J]. BMC Genomics, 2018,19(1):127.
 [19]McGinn TE, Mitchell DM, Meighan PC, et al. Restoration of dendritic complexity, functional connectivity, and diversity of regenerated retinal bipolar neurons in adult zebrafish [J]. J Neurosci, 2018,38(1):120-136.
 [20]Džulova D, Lawless D, Pinton GG, et al. Incomplete recovery of zebrafish retina following cryoinjury [J]. Cells, 2022,11(8):1373.
 [21]Gao H, Luodan A, Huang X, et al. Müller glia-mediated retinal regeneration [J]. Mol Neurobiol, 2021,58(5):2342-2361.
文章导航

/