脂肪间充质干细胞CD73亚群心肌分化能力评价

郭志坤 张珉 高建辉 李琼 余霞 王晶晶

解剖学报 ›› 2016, Vol. 47 ›› Issue (1) : 49-54.

欢迎访问《解剖学报》官方网站!今天是 English
解剖学报 ›› 2016, Vol. 47 ›› Issue (1) : 49-54.
细胞和分子生物学

脂肪间充质干细胞CD73亚群心肌分化能力评价

  • 郭志坤1,张珉2,高建辉3,李琼3,余霞3,王晶晶3
作者信息 +

Evaluation of cardiomyocyte differentiation of CD73 subpopulations in adipose derived mesenchymal stem cells

  • GUO ZHIKUNZhang Min2,Gao Jianhui3,Li Qiong3,Yu Xia3,Wang Jingjing3
Author information +
文章历史 +

摘要

目的 探讨CD73+和CD73-脂肪间充质干细胞(ADMSCs)两个亚群向心肌分化能力差异,筛选出心肌分化优势亚群,为进一步开展细胞治疗心肌疾患提供实验参考。方法 流式细胞仪分选CD73+/CD73- ADMSCs 亚群,HE染色观测其形态。体外5-aza诱导CD73+/CD73- 亚群,细胞免疫荧光化学法检测心肌特异性心肌肌钙蛋白c-TnT,Real-time PCR检测c-TnT、Gata-4变化;DAPI标记两个亚群后,移植到大鼠心肌内,细胞免疫荧光化学法检测移植细胞c-TnT表达。结果 CD73+ADMSCs形态以小细胞为主呈细长形或纺锤状,CD73-细胞以宽大扁平或方形等为主。体外成心肌诱导后,CD73+ADMSCs心肌特异性c-TnT表达率45.5% 、CD73-亚群5.75 %,基因水平上CD73+亚群表达c-TnT、Gata-4明显高于阴性亚群(P<0.01)。体内CD73+亚群较阴性亚群高表达c-TnT。结论 CD73+ADMSCs较CD73-ADMSCs具有更高向心肌分化的潜能,CD73+ADMSCs可能更具有心肌治疗的前景。

Abstract

Objective The cardiac differentiated potency about subpopulations of CD73+/CD73- ADMSCs were evaluated for selecting subsets of cardiac differentiation advantage. Methods Using flow cytometry to separate CD73 +/CD73- ADMSCs subgroups, their shape were detected by HE staining. After ADMSCs subgroups induced by 5-aza, the expression of c-TnT (myocardial specificity protein myocardial troponin) was detected by immunofluorescent chemical method, and using real-time PCR to check c-TnT and Gata-4 gene level changes. DAPI labeled subpopulations were myocardial transplanted, and then the expression of c-TnT were detected by immunofluorescence of transplanted cells. Results CD73+ subset were mainly small cells, possessed Stellate cells, triangle cells, slender and spindle cells. In contrast, CD73- cells showed a homogeneous morphologic pattern with wide flat or square shapes, dubbed big cells. After myocardium induction, the express rate of c-TnT is 45.5% in CD73+ ADMSCs , but in the CD73- subgroup is only 5.75%. CD73+ subsets was higher than negative subgroup in expression of c-TnT and Gata-4 gene (P < 0.01). CD73+ subsets was higher than negative subgroup in expression of c-TnT in vivo also. Conclusions The percentage of cardiomyocyte transdifferentiation in CD73+ ADMSCs was obviously higher than that in CD73- subset. The results could be demonstrated that CD73+ cell possessed preferable therapy effect for heart disease.

关键词

CD73 / cTnT / 心肌分化 / 脂肪间充质干细胞

Key words

CD73 / cTnT / Cardiomyocytes differentiation / Adipose-derived mesenchymal stem cells

引用本文

导出引用
郭志坤 张珉 高建辉 李琼 余霞 王晶晶. 脂肪间充质干细胞CD73亚群心肌分化能力评价[J]. 解剖学报. 2016, 47(1): 49-54
GUO ZHIKUN Zhang Min Gao Jianhui Li Qiong Yu Xia Wang Jingjing. Evaluation of cardiomyocyte differentiation of CD73 subpopulations in adipose derived mesenchymal stem cells[J]. Acta Anatomica Sinica. 2016, 47(1): 49-54

参考文献

参考文献
[1] Valina C, Pinkernell K, Song YH, et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction [J]. Euro heart j,2007; 28 (21):2667-2677.
[2] Tsuji H, Miyoshi S, Ikegami Y, et al. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes [J]. Cir Res. 2010; 106 (10):1613-1623.
[3] Tang J, Wang J, Yang J, et al. Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats [J]. Eur J Cardiothorac Surg. 2009; 36 (4):644-650.
[4] Mias C, Lairez O, Trouche E, et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction [J]. Stem cells (Dayton, Ohio), 2009; 27 (11):2734-2743.
[5] Sadat S, Gehmert S, Song YH, et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF [J]. Biochem Biophys Res Commun. 2007; 363 (3):674-679.
[6] Grauss RW, van Tuyn J, Steendijk P, et al. Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts [J]. Stem cells (Dayton, Ohio). 2008; 26 (4):1083-1093.
[7] Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells [J]. J Cell Biochem. 2009; 106 (6):984-991.
[8] Russell KC, Phinney DG, Lacey MR, et al. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment [J]. Stem cells (Dayton, Ohio). 2010; 28 (4):788-798.
[9] Martin-Rendon E, Sweeney D, Lu F, et al. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies [J]. Vox Sang. 2008; 95 (2):137-148.
[10] Phinney DG. Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy [J]. Cell Cycle. 2007; 6 (23):2884-2889.
[11] Campioni D, Lanza F, Moretti S, et al. Loss of Thy-1 (CD90) antigen expression on mesenchymal stromal cells from hematologic malignancies is induced by in vitro angiogenic stimuli and is associated with peculiar functional and phenotypic characteristics [J]. Cytotherapy. 2008; 10 (1):69-82.
[12] Gaebel R, Furlani D, Sorg H, et al. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration J]. Plos One. 2011; 6 (2):e15652.
[13] Ishimura D, Yamamoto N, Tajima K, et al. Differentiation of adipose-derived stromal vascular fraction culture cells into chondrocytes using the method of cell sorting with a mesenchymal stem cell marker [J]. Tohoku J Exp Med. 2008; 216 (2):149-156.
[14] Tamai K, Yamazaki T, Chino T, et al. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia [J]. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108 (16):6609-6614.
[15] Kaltz N, Ringe J, Holzwarth C, et al. Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources [J]. Exp Cell Res. 2010; 316 (16):2609-2617.
[16] Tarnok A, Ulrich H, Bocsi J. Phenotypes of stem cells from diverse origin [J]. Cytometry A. 2010; 77 (1):6-10.
[17] Boiret N, Rapatel C, Veyrat-Masson R, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow [J]. Exp Hematol. 2005; 33 (2):219-225.
[18] Synnestvedt K, Furuta GT, Comerford KM, et al. Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia [J]. J clin invest. 2002; 110 (7):993-1002.
[19] Haasters F, Prall WC, Anz D, et al. Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing [J]. J Anat. 2009; 214 (5):759-767.
[20] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy. 2006; 8 (4):315-317.
[21] Yang J, Song T, Wu P, et al. Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells [J]. Mol Med Report. 2011; 5 (1):108-113.
[22] Peran M, Marchal JA, Lopez E, et al. Human cardiac tissue induces transdifferentiation of adult stem cells towards cardiomyocytes [J]. Cytotherapy. 2010; 12 (3):332-337.
[23] Moscoso I, Centeno A, Lopez E, et al. Differentiation "in vitro" of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation [J]. Transplantation proceedings. 2005; 37 (1):481-482.
[24] Kadivar M, Khatami S, Mortazavi Y, et al. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Bioph Res commun[J]. 2006; 340 (2):639-647.

基金

国家自然科学基金项目

Accesses

Citation

Detail

段落导航
相关文章

/