海马背侧注射β-淀粉样蛋白 25~35 激活胶质细胞和p38丝裂原活化蛋白激酶诱导神经元凋亡
王元伟 郑关毅* 陈晓春 张静 黄天文 叶洪 潘晓东
解剖学报 ›› 2014, Vol. 45 ›› Issue (5) : 616-621.
海马背侧注射β-淀粉样蛋白 25~35 激活胶质细胞和p38丝裂原活化蛋白激酶诱导神经元凋亡
Ativation of gliacytes and p38 mitogen-activated protein kinase and possible mechanism of neuronal apoptosis induced by Aβ25-35 injection into hippocampus in rats
目的 探讨海马背侧注射β-淀粉样蛋白25~35(Aβ 25~35)后胶质细胞与 p38丝裂原活化蛋白激酶(p38MAPK)激活的关系,及Aβ 25~35 诱导神经元凋亡的可能机制。 方法 采用免疫组织化学及免疫印迹方法观察海马背侧注射Aβ 25~35 后不同时段小胶质细胞(MG)、星形胶质细胞(AS)的激活和磷酸化p38MAPK(p-p38MAPK)在海马组织中的表达;酶联免疫吸附法检测肿瘤坏死因子-α(TNF-α)及白细胞介素-1β(IL-1β)在海马组织中的含量;Nissl染色法观察海马神经元存活;TUNEL染色观察海马神经元凋亡。 结果 注射Aβ 25~35 后海马内抗特异性标记小胶质细胞(ox-42)、胶质原纤维酸性蛋白(GFAP)、和p-p38MAPK的表达与TNF-α、IL-1β的含量同步增加,于7d达到高峰,而Nissl阳性神经元数量逐渐减少,TUNEL阳性神经元数量则逐渐增多,亦于7d达到高峰。结论 海马背侧注射Aβ 25~35 可能通过激活胶质细胞和p38MAPK,使TNF-α,IL-1β含量增加导致海马神经元凋亡。
Objective To investigate the relationship between activation of gliacytes, mitogen-activated protein kinase (p38MAPK) and neuronal apoptosis after microinjecting aggregated Aβ25-35 into hippocampus. Methods The model was established by using stereotaxic technique to inject 10μg aggregated Aβ25-35 into dorsal hippocampus in rats. The rats were grouped as the control, vehicle and model groups. Immunohistochemistry and Western blotting were used for detection of activation of microglia(MG), atrocytes (AS) and expression of p-p38MAPK in the hippocampus. ELISA was used to evaluate the level of TNF-α and IL-1β. The survival neurons were observed by Nissl staining and the apoptotic neurons were identified by tunnel staining. Results Expression of ox-42, GFAP, p-p38MAPK were up-regulated in hippocampus, as well as TNF-α、IL-1β, which reached a highest value on the 7th day after injection of Aβ25-35. However, the number of neuron with Nissl positive decreased gradually, and the tunnel positive neurons increased highly and reached a peak value on the 7th day.There were significant differences between the control and vehicle group(P<0.01). Conclusion Apoptosis of the neuron caused by Aβ25-35 injection may result from activation of gliacytes, p38 MAPK and increase of TNF-α and IL-1β level.
阿尔茨海默病 / β-淀粉样蛋白 / p38丝裂原活化蛋白激酶 / 胶质细胞 / 海马神经元 / 免疫印迹法 / 大鼠
Alzheimer’s disease / Amyloid protein β / P38 mitogen-activated protein kinases / Gliacyte / Hippocampal neuron /   / Wstern blotting / Rat
[1]Chan KH,Lam KS,Cheng OY, et al.Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity[J]. PLoS One, 2012,7(12):e52-54.
[2]Lublin A, Link C. Alzheimer’s disease drug discovery: in-vivo screening using C elegans as a model for β-amyloid peptide-induced toxicity[J]. Drug Discov Today Technol, 2013,10(1):e115-119.
[3]Zhong ShZh, Ma ShP, Hong ZY, et al. Anti-inflammation effect of danggui shaoyao san on Alzheimer’s diseases[J]. China Journal of Chinese Materia Medica,2011,36(22):3155-3160.(in Chinese)
钟树志,马世平,洪宗元, 等. 基于抗炎作用的当归芍药散抗阿尔茨海默氏症的实验研究[J].中国中药杂志, 2011,36(22):3155-3160.
[4]Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease[J ]. Int J Biochem Cell Biol, 2005,37(2):289-305.
[5]Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice[J]. J Neuroinflammation,2005,7(2):22.
[6]Pan XD, Chen XC, Zhu YG, et al.Tripchlorolide protects neuronal cells from microglia-mediated beta-amyloid neurotoxicity through inhibiting NF-kappa B and JNK signaling[J]. Glia, 2009,57(11):1227-1238.
[7]Chen X, Lin R, Chang L, et al. Enhancement of long-term depression by soluble amyloid β protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase3[J]. Neuroscience,2013, 253:435-443.
[8]Giovannini MG, Scali C, Prosperi C, et al. Beta 2 amyloid induced inflammation and cholinergic hypofunction in the rat brain in vivo:involvement of the p38MAPK pathway[J]. N eurobiol Dis, 2002,11(2):257-274.
[9]Meldrum KK, Meldrum DR, Hile KL, et al. The struggle for iron: gastrointe-stinal microbes modulate the host immune response during infection[J].J Leukoc Biol, 2007,81(2):393-400.
[10]Liu S, Yang J, Wang L, et al. Tibia tumor-induced cancer pain involves spinal p38 mitogen-activated protein kinase activation via TLR4-dependent mechanisms[J]. Brain Res, 2010, 30 (1346):213-223.
[11]Agrawal S, Gollapudi S, Su H, et al. Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway[J]. J Clin Immunol, 2011,31(3):472-478.
[12]Chen J, Liu JW, Zeng HL, et al. p38 mitogen-activated protein kinase inhibitor suppresses the expression of pro-inflammatory cytokines in liver from brain dead rats[J]. Chinese Journal of Hepatology, 2010, 18(9): 703-706. (in Chinese)
陈洁, 刘嘉雯, 曾慧兰, 等. p38丝裂原活化蛋白激酶抑制剂减少大鼠肝脏炎症细胞因子的表达[J]. 中华肝脏病杂志,2010,18(9):703-706.
[13]Raingeaud J, Rincon M, Enslen H, et al. Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway[J].EMBO J, 1998, 17(10):2817-2829.
[14]Shaftel SS, Griffin WS, O’Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective[J].J Neuroinflammation, 2008, 26 (10):7.
[15]Mrak RE. Neuropathology and the neuroinflammation idea[J]. J Alzheimers Dis, 2009,18(3):473-481.
福建省卫生厅中医药重点课题;福建省自然科学基金资助项目
/
〈 |
|
〉 |