蓝斑核在帕金森病发病中的病理改变及其作用

姚宁 徐群渊*

解剖学报 ›› 2014 ›› Issue (2) : 291-296.

欢迎访问《解剖学报》官方网站!今天是 English
解剖学报 ›› 2014 ›› Issue (2) : 291-296. DOI: 10.3969/j.issn.0529-1356.2014.02.028
综述

蓝斑核在帕金森病发病中的病理改变及其作用

  • 姚宁 徐群渊*
作者信息 +

Pathology and impact of the locus ceruleus in Parkinson’s disease

  • YAO Ning  XU Qun-yuan*
Author information +
文章历史 +

摘要

目的 帕金森病是一种常见的神经变性性疾病,其病理特征为中脑黑质多巴胺能神经元的选择性和进行性变性。而近来的临床资料提示,在帕金森病早期,脑桥蓝斑核的去甲肾上腺素能神经元先于黑质发生病变。实验室研究也发现,蓝斑变性后,黑质多巴胺能神经元的电生理状态、神经递质代谢活动会发生改变,对损伤因素的易感性增高,促进了帕金森病的发病。其原因可能为蓝斑通过调节递质释放、摄取毒物、分泌营养物质等方式影响黑质多巴胺能神经元以及该区域的神经胶质细胞,对多巴胺系统起到保护作用。本文综述了帕金森病临床资料中蓝斑的病理表现、以及基础研究中蓝斑与黑质的关系以及蓝斑对黑质起保护作用的可能机制。本综述应能为深入研究帕金森病的发病机制提供参考。

Abstract

Objective Parkinson’s disease (PD) is a degenerative disorder of the brain characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Recently, however, it has been shown that noradrenergic cells from the locus coeruleus (LC) also degenerate prior to the SNc. Animal studies have disclosed that the electrophysiology and transmitter metabolism of DA neurons as well as its sensitivity to injury factors were abnormal due to LC lesion. The mechanism maybe lies in the function of LC which can accommodate of transmitter in DA neurons, absorb toxic substance and excrete nutrition factors to the SNc area influencing neurons and/or glial cells, leading to promotion of onset of PD. In this article, we reviewed the pathology of the LC in PD patients, the relation between the LC and SNc in laboratory researches on PD animal models, and the protective mechanism of LC to the SNc, intending to help further studies on PD pathogenesis.

引用本文

导出引用
姚宁 徐群渊*. 蓝斑核在帕金森病发病中的病理改变及其作用[J]. 解剖学报. 2014(2): 291-296 https://doi.org/10.3969/j.issn.0529-1356.2014.02.028
YAO Ning XU Qun-yuan*. Pathology and impact of the locus ceruleus in Parkinson’s disease[J]. Acta Anatomica Sinica. 2014(2): 291-296 https://doi.org/10.3969/j.issn.0529-1356.2014.02.028

参考文献

[1]Wang YJ. Neurology[M]. 2nd Edition. Beijing: Peking University Medical Press, 2009: 158-168.(in Chinese)
王拥军. 神经病学 [M]. 第2版.北京: 北京大学医学出版社, 2009: 158-168. 
[2]Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease [J]. Neurobiol Aging, 2003, 24(2):197-211.
[3]Zarow C, Lyness SA, Mortimer JA, et al. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases [J]. Arch Neurol, 2003, 60(3):337-341.
[4]Dickson DW. Parkinson’s disease and parkinsonism: neuropathology [J]. Cold Spring Harb Perspect Med, 2012, 2(8):a009258.
[5]Zhang ChY. Human Anatomy[M]. 3rd Edition. Beijing: People’s Medical Publishing House, 2009: 1378-1380. (in Chinese)
张朝佑. 人体解剖学[M]. 第3版. 北京: 人民卫生出版社, 2009: 1378-1380.
[6]Del Tredici K, Rub U, De Vos RA, et al. Where does parkinson disease pathology begin in the brain [J]? J Neuropathol Exp Neurol, 2002, 61(5):413-426.
[7]Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory [J]. Brain Res Brain Res Rev, 2004, 45(1):38-78.
[8]German DC, Manaye KF, White CL 3rd, et al. Disease-specific patterns of locus coeruleus cell loss [J]. Ann Neurol, 1992, 32(5):667-676.
[9]Patt S, Gerhard L. A Golgi study of human locus coeruleus in normal brains and in Parkinson’s disease [J]. Neuropathol Appl Neurobiol, 1993, 19(6):519-523.
[10]Gesi M, Soldani P, Giorgi FS, et al. The role of the locus coeruleus in the development of Parkinson’s disease [J]. Neurosci Biobehav Rev, 2000, 24(6):655-668.
[11]Baloyannis SJ, Costa V, Baloyannis IS. Morphological alterations of the synapses in the locus coeruleus in Parkinson’s disease [J]. J Neurol Sci, 2006, 248(1-2):35-41.
[12]McMillan PJ, White SS, Franklin A, et al. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson‘s disease and Alzheimer’s disease [J]. Brain Res, 2011, 1373:240-252.
[13]Isaias IU, Marzegan A, Pezzoli G, et al. A role for locus coeruleus in Parkinson tremor [J]. Front Hum Neurosci, 2012, 2012:5.
[14]Pavese N, Rivero-Bosch M, Lewis SJ, et al. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study [J]. NeuroImage, 2011, 56(3):1463-1468.
[15]Archer T, Fredriksson A. Influence of noradrenaline denervation on MPTP-induced deficits in mice [J]. J Neural Transm, 2006, 113(9):1119-1129.
[16]Seniuk NA, Tatton WG, Greenwood CE. Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP [J]. Brain Res, 1990, 527(1):7-20.
[17]Masilamoni GJ, Bogenpohl JW, Alagille D, et al. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys [J]. Brain, 2011, 134(7):2057-2073.
[18]Fulceri F, Biagioni F, Ferrucci M, et al. Abnormal involuntary movements (AIMs) following pulsatile dopaminergic stimulation: severe deterioration and morphological correlates following the loss of locus coeruleus neurons [J]. Brain Res, 2007, 1135(1):219-229.
[19]Delaville C, Navailles S, Benazzouz A. Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism [J]. Neuroscience, 2012, 202:424-433.
[20]Daher JP, Pletnikova O, Biskup S, et al. Neurodegenerative phenotypes in an A53T-synuclein transgenic mouse model are independent of LRRK2 [J]. Hum Mol Genet, 2012, 21(11):2420-2431.
[21]Sotiriou E, Vassilatis DK, Vila M, et al. Selective noradrenergic vulnerability in alpha-synuclein transgenic mice [J]. Neurobiol Aging, 2010, 31(12):2103-2114.
[22]Kurz A, Double KL, Lastres-Becker I, et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice [J]. PLoS One, 2010, 5(7):e11464.
[23]Qin L, Wu X, Block ML, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration [J]. Glia, 2007, 55(5):453-462.
[24]Ota A, Kaneko YS, Mori K, et al. Effect of peripherally administered lipopolysaccharide (LPS) on GTP cyclohydrolase I, tetrahydrobiopterin and norepinephrine in the locus coeruleus in mice [J]. Stress, 2007, 10(2):131-136.
[25]Mouton PR, Kelley-Bell B, Tweedie D, et al. The effects of age and lipopolysaccharide (LPS)-mediated peripheral inflammation on numbers of central catecholaminergic neurons [J]. Neurobiol Aging, 2012, 33(2):423.e27-.e36.
[26]Mann DM. The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system [J]. Mech Ageing Dev, 1983, 23(1):73-94.
[27]Lategan AJ, Marien MR, Colpaert FC. Suppression of nigrostriatal and mesolimbic dopamine release in vivo following noradrenaline depletion by DSP-4: a microdialysis study [J]. Life Sci, 1992, 50(14):995-999.
[28]Fornai F, Alessandri MG, Torracca MT, et al. Noradrenergic modulation of methamphetamine-induced striatal dopamine depletion [J]. Ann N Y Acad Sci, 1998, 844:166-177.
[29]Room P, Postema F, Korf J. Divergent axon collaterals of rat locus coeruleus neurons: demonstration by a fluorescent double labeling technique [J]. Brain Res, 1981, 221(2):219-230.
[30]Benarroch EE. The locus ceruleus norepinephrine system: functional organization and potential clinical significance [J]. Neurology, 2009, 73(20):1699-1704.
[31]Tong J, Hornykiewicz O, Kish SJ. Inverse relationship between brain noradrenaline level and dopamine loss in Parkinson disease: a possible neuroprotective role for noradrenaline [J]. Arch Neurol, 2006, 63(12):1724-1728.
[32]Dzirasa K, Phillips HW, Sotnikova TD, et al. Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony [J]. J Neurosci, 2010, 30(18):6387-6397.
[33]Belujon P, Bezard E, Taupignon A, et al. Noradrenergic modulation of subthalamic nucleus activity: behavioral and electrophysiological evidence in intact and 6-hydroxydopamine-lesioned rats [J]. J Neurosci, 2007, 27(36):9595-9606.
[34]Hallman H, Sundstrom E, Jonsson G. Effects of the noradrenaline neurotoxin DSP 4 on monoamine neurons and their transmitter turn-over in rat CNS [J]. J Neural Transm, 1984, 60(2):89-102.
[35]Fornai F, Giorgi FS, Alessandri MG, et al. Effects of pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on methamphetamine pharmacokinetics and striatal dopamine losses [J]. J Neurochem, 1999, 72(2):777-784.
[36]Srinivasan J, Schmidt WJ. Functional recovery of locus coeruleus noradrenergic neurons after DSP-4 lesion: effects on dopamine levels and neuroleptic induced-parkinsonian symptoms in rats [J]. J Neural Transm, 2004, 111(1):13-26.
[37]Bezard E, Brefel C, Tison F, et al. Effect of the alpha 2 adrenoreceptor antagonist, idazoxan, on motor disabilities in MPTP-treated monkey [J]. Prog Neuropsychopharmacol Biol Psychiatry, 1999, 23(7):1237-1246.
[38]Rommelfanger KS, Weinshenker D. Norepinephrine: The redhead-ed stepchild of Parkinson’s disease [J]. Biochem Pharmacol, 2007, 74(2):177-190.
[39]Rommelfanger KS, Weinshenker D, Miller GW. Reduced MPTP toxicity in noradrenaline transporter knockout mice [J]. J Neurochem, 2004, 91(5):1116-1124.
[40]Healy CF, Brannigan AE, Connolly EM, et al. The effects of low-frequency endo-anal electrical stimulation on faecal incontinence: a prospective study [J]. Int J Colorectal Dis, 2006, 21(8):802-806.
[41]Speciale SG, Liang CL, Sonsalla PK, et al. The neurotoxin 1-methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter [J]. Neuroscience, 1998, 84(4):1177-1185.
[42]Bing G, Zhang Y, Watanabe Y, et al. Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra [J]. Brain Res, 1994, 668(1-2):261-265.
[43]Otto D, Unsicker K. Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice [J]. J Neurosci, 1990, 10(6):1912-1921.
[44]Follesa P, Mocchetti I. Regulation of basic fibroblast growth factor and nerve growth factor mRNA by beta-adrenergic receptor activation and adrenal steroids in rat central nervous system [J]. Mol Pharmacol, 1993, 43(2):132-138.
[45]Heneka MT, Nadrigny F, Regen T, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine [J]. Proc Natl Acad Sci USA, 2010, 107(3):6058-6063.
[46]Qian L, Wu HM, Chen SH, et al. Beta 2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway [J]. J Immunol, 2011, 186(7):4443-4454.
[47]Isaias IU, Marotta G, Pezzoli G, et al. Enhanced catecholamine transporter binding in the locus coeruleus of patients with early Parkinson disease [J]. BMC Neurol, 2011, 11(1):88.
[48]de Oliveira RB, Gravina FS, Lim R, et al. Heterogeneous responses to antioxidants in noradrenergic neurons of the locus coeruleus indicate differing susceptibility to free radical content [J]. Oxid Med Cell Longev, 2012, 2012:1-10.
 

基金

北京市科技计划基础研究专项资助;国家自然科学基金资助项目;国家973计划基金资助项目


Accesses

Citation

Detail

段落导航
相关文章

/