大黄鱼幼鱼鳃结构的光镜和透射电镜观察
Light and transmission electron microscopic observation on the gill sturcture of juvenile Pseudosciaena crocea
目的 探讨大黄鱼幼鱼鳃的显微和超微结构,为大黄鱼幼鱼的呼吸和对盐度的适应生理提供参考。方法 应用石蜡及超薄切片,采用HE染色,分别在光镜和透射电镜下观察大黄鱼幼鱼鳃的显微和超微结构。结果 大黄鱼幼鱼鳃丝结构和其他硬骨鱼基本相似,鳃丝呈梳状连续排列在鳃弓上,鳃小片紧密排列在鳃丝两侧。鳃小片由上皮细胞、内皮细胞、柱细胞和毛细血管网构成。鳃小片上和鳃小片基部都分布有泌氯细胞,鳃小片基部泌氯细胞数量较多,细胞内具有微小管系统,线粒体数量丰富。 结论 大黄鱼幼鱼鳃结构与其他硬骨鱼基本类似,大黄鱼鳃的结构可能是其对盐度变化有较强适应能力的原因。
Objective To study the microscopic structure and ultrastructure of gill of juvenile Pseudosciaena croceafor more abundant reference of breathing and salinity adaptation physiology. Methods The microscopic structure and ultrastructure of gill of juvenilePseudosciaena crocea were observed by light and transmission electron microscopic. Results The structures of gill of juvenilePseudosciaena crocea were similar to those of other teleosts, the comb primary filaments lined on the gill, and secondary gill lamellae inlaid on two sides of each filament. Secondary filaments consisted of epithelial cells, endothelial cells, pillar cells and capillary vessel net. Chloride cells were found both in the secondary filaments and the base. In the base of the secondary filaments, the number of chloride cells were more. Inside the cells there were tubular network and abundant mitochondrias. Conclusion The structures of gill of juvenilePseudosciaena crocea were similar to those of other teleosts. The features of the structure of gill maybe can explain whyPseudosciaena croceahave strong adaptability to salinity.
Gill / Salinity / Light microscope / Transmission electron microscope / JuvenilePseudosciaena crocea
[1]Zhu YD, Wu HL. The Fishes of Fujian Province(PartⅡ)[M].Fuzhou:Fujian Science and Technology Press,1985: 101-136. (in Chinese)
朱元鼎, 伍汉霖. 福建鱼类志(下卷)[M]. 福州: 福建科技出版社,1985, 101-136.
[2]Zhang CL, Liu JF, Li YC, et al. Analysing the present condition and countermeasure of cultured large yellow croakerPseudosciaena crocea in Fujian province[J].Journal of Shanghai Fisheries University, 2002,11(1):77-83. (in Chinese)
张彩兰, 刘家富, 李雅璀, 等. 福建省大黄鱼养殖现状分析与对策[J]. 上海水产大学学报,2002,11(1):77-83.
[3]Chen ChJ. Observation on growth properties of cultured large yellow croaker, Pseudosciaena crocea (Richardson)[J]. Modern Fisherries Information,2011,26(3):24-29.
陈成进. 人工养殖大黄鱼主要生长特征观察[J]. 现代渔业信息,2011,26(3):24-29.
[4]Li B, Zhong YB, Lü WQ. Salinity tolerance of Pseudosciaena crocea during early development[J]. Journal of Shanghai Ocean University, 2012,21(2):204-211. (in Chinese)
李兵, 钟英斌, 吕为群. 大黄鱼早期发育阶段对盐度的适应性[J]. 上海海洋大学学报,2012,21(2):204-211.
[5]Ning Y, Xiande L, Zhi YW,et al.A genetic map of large yellow croaker Pseudosciaena crocea[J]. Aquaculture,2007,264(1):16-26.
[6]Wilson JM, Laurent P. Fish gill morphology:inside out [J]. Exp Zool,2002,293(3):192-213.
[7]Bartels H. Freeze-fracture study of the pavement cell in the lamprey gill epithelium. Analogy of membrane structure with the granular cell in the amphibian urinary bladder[J]. Biol Cell,1989,66(1):165-171.
[8]Carmona R, Garcia-Gallego M, Sanz A, et al. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens[J].Journal of Fish Biology,2004,64(2):553-566.
[9]Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-baseregulation, and excretion of nitrogenous waste [J]. Physiol Rev,2005,85(1):97-177.
[10]Xing WX, An LG, Yang GW, et al. A scanning electron microscopical observation of the gill of Clarias fuscus[J]. Journal of Fisheries of China, 2000,24(2):101-103. (in Chinese)
邢维贤, 安利国, 杨桂文, 等. 胡子鲶鳃扫描电镜的观察[J]. 水产学报,2000,24(2):101-103.
[11]Li JE, Ou YJ, Liu C. A scanning electron microscopic observation of gill ultrastructure of channel catfish Ictalurus punctatus[J]. South China Fisheries Science, 2009,5(5):52-56. (in Chinese)
李加儿, 区又君, 刘匆. 斑点叉尾鮰鳃结构的扫描电镜观察[J]. 南方水产,2009,5(5):52-56.
[12]Hughes GM,Wright DE. A comparative study of the ultrastructure of the water/blood pathway in the secondary lamellae of teleost and elasmobranch fishes- benthic forms[J].Z Zellforsch,1970,104(4):478-493.
[13]Wei XH, Ru ShG, Xu L, et al. Structural and functional changes of euryhaline fish branchial chloride cell and hormonal regulation during seawater and freshwater adaptation[J]. Marine Sciences, 2001,25(4):16-20. (in Chinese)
魏渲辉, 汝少国, 徐路, 等. 海水和淡水适应过程中广盐性鱼类鳃氯细胞的形态与功能变化及其激素调节[J]. 海洋科学,2001,25(4):16-20.
[14]Toyoji K, Kiyono S, Fumi K, et al. Chloride cells during early life stages of fish and their functional differentiation[J]. Fisheries Science,2002,68:1-9.
[15]Pisam M. Membranous systems in the“chloride cell”of teleostean fish gill:their modifications in response to the salinity of the environment[J]. Anat Rec,1981,200(4):401-414.
[16]Shikano T, Fujio Y. Immunolocalization of Na+, K+-ATPase and morphological changes in two types of chloride cells in the gill epithelium during seawater and freshwater adaptation in a euryhaline teleost, Poecilia reticulate[J]. J Exp Zool,1998,281(2):80-89.
[17]Wong CKC, Chan DKO. Chloride cell subtypes in the gill epithelium of Japanese eel Anguilla japonica[J]. Am J Physiol Regul Integr Comp Physiol,1999,277(2):R517-R522.
[18]Sheng YL, Chen YQ. Effects of low salinity domestication on the survival of Pseudosciaena crocea and Sparusmacrocephalus[J]. Reservoir Fisheries, 2007,27(6):47-48. (in Chinese)
沈盎绿, 陈亚瞿. 低盐度驯化对大黄鱼和黑鲷存活的影响[J]. 水利渔业,2007,27(6):47-48.
海水鱼内陆无公害生态养殖技术研究与开发
/
〈 |
|
〉 |