急性寒冷暴露对小鼠中枢神经系统的影响
Effects of acute cold exposure on the mouse central nervous system
目的 探讨急性寒冷暴露对小鼠中枢神经系统的影响。方法 选择生后40~50d的成年雄性小鼠40只,置于温度为0~-4℃环境中饲养20d,建立急性寒冷暴露模型。采用免疫细胞化学标记雌激素受体;DiI散射方法标记视皮质锥体细胞树突棘;利用透射电子显微镜观察突触的超微结构。结果 急性寒冷暴露诱导小鼠视皮质锥体细胞树突棘的密度降低,形成的突触数量减少,部分突触出现树突胞质水肿、细胞器肿胀及微管减少等改变,明显抑制神经细胞增殖。结论 急性寒冷暴露可导致神经系统的结构和功能改变,与雌激素及其受体G蛋白偶联受体30(GPR30)直接参与寒冷应激反应过程有关。
Objective The objective of this study is to explore the effects of acute cold exposure to the mouse central nervous system. Methods To establish an acute cold exposure animal model, 40 adult male mice ofP40-50 were housed at 0℃ to -4℃ environment for 20 days. Estrogen receptors were labeled by immunohistochemistry; the dendritic spines of visual cortical pyramidal cells were labeled by DiI diolistic assay; and synaptic ultrastructure was observed by transmission electron microscopy. Results Acute cold exposure induced a decrease in the dendritic spine densities of mouse visual cortical pyramidal cells, along with a decrease in the number of synapse formations. The ultrastructures of some synapses were observed to have cytoplasmic and organellar swellings, as well as a decrease in microtubules. Furthermore, the proliferation of neural cells was significantly inhibited. Conclusion Acute cold exposure may cause structural and functional changes in the mouse central nervous system, possibly due to the direct participation of estrogen and its receptor, G protein-coupled receptor30 (GPR30), in acute cold response.
寒冷应激 / 树突棘 / 突触 / 视皮质 / 透射电子显微镜 / DiI散射 / 小鼠
Acute cold response / Dendritic spine / Synapse / Visual cortex / Transmission electron miscroscopy / DiI diolistic assay / Mouse
[1]Richard E.Lee,Jr.Insect cold hardiness:to freeze or not to freeze[J].Bioscience,1989,39(5):308-313.
[2]Planas AM, Soriano MA, Ferrer I, et al. Regionalex pression of inducible heat shock protein-70 mRNA in the rat brain following administration of convulsantdrugs[J]. Mol Brain Res, 1994, 27(1):127-137.
[3]Harinath K, Malhotra AS, Pal K, et al. Autonomic Nervous System and Adrenal Response to Cold in Man at Antarctica[J]. Wilderness Environ Med, 2005,16(2):81-91.
[4]Mohr WJ, Jenabzadeh K, Ahrenholz DH. Cold injuries[J]. Hand Clin, 2009, 25(4):481-496.
[5]Wu JY, Ji AL, Li YM, et al. Effects of acute cold exposure on permeability of blood brain barrier and protection of luteolin in rats[J]. Medical Journal of National Defending Forces in Northwest China, 2008,29(5):364-367.(in Chinese)
吴佳颖,季爱玲,李运明,等.急性冷暴露对大鼠血脑屏障通透性的影响及木樨草素的保护作用[J].西北国防医学杂志,2008,29(5):364-367.
[6]Gao Zh, Abulimiti Adilijiang,Uper Hamulati. Effect of dry and cold environment on the biological characterization of mice [J]. Science & Technology Review, 2008,26(14):84-87.(in Chinese)
高振,阿地力江阿布力米提,哈木拉提吾甫尔.干燥寒冷环境对小鼠生物表征的影响[J].科技导报,2008,26(14):84-87.
[7]Deng JB, Yu DM, Wu P. Introduction of DiI diolistic assay to label the nervous cell and glia [J]. Acta Anatomica Sinica, 2006, 37(5):596-598.(in Chinese)
邓锦波,于东明,吴萍. DiI散射标记神经元及神经胶质细胞技术介绍[J].解剖学报, 2006, 37(5): 596-598.
[8]Cui ZJ,Zhao KB,Zhao HJ,et al. Prenatal alcohol exposure induces long-term changes in dendritic spines and synapses in the mouse visual cortex[J]. Alcohol, 2010, 45(4): 312-319.
[9]Liangpunsakul S, Sozio MS, Shin E, et al. Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels [J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(6): G1004-1012.
[10]Qiang M, Wang MW, Elberger AJ. Second trimester prenatal alcohol exposure alters development of rat corpus callosum [J]. Neurotoxicol Teratol, 2002, 24:719-732.
[11]Wang TW, Stromberg GP, Whitney JT,et al.Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones[J]. J Comp Neurol,2006,497(1):88-100.
[12]Hancock A, Priester C, Kidder E, et al. Does 5-bromo-2'deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo [J] ? Behav Brain Res, 2009, 199 (2): 218-221.
[13]Deng J , Elberger AJ. Corpus callosum and visual cortex of mice with deletion of the NMDA-NR1 receptor. II. Attenuation of prenatal alcohol exposure effects [J]. Brain Res Dev Brain Res, 2003, 144(2): 135-150.
[14]Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines[J]. Annu Rev Physiol, 2002, 64 :313-353.
[15]Thiel G. Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles [J]. Brain Pathol, 1993, 3(1): 87-95.
[16]Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications[J]. J Clin Neurosci, 2006,13(9): 885-897.
[17]Strachan LA, Tarnowski-Garner HE, Marshall KE, et al. The evolution of cold tolerance in drosophila larvae[J]. Physiol Biochem Zool, 2011,84(1): 43-53.
[18]Ko ?tál V, Korbelová J, Rozsypal J, et al. Long-term cold acclimation extends survival time at 0℃ and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster[J]. Plos One,2011,6(9):e25025.
[19]Ouellet V, Routhier-Labadie A, Bellemare W , et al.Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. [J]. J Clin Endocrinol Metab, 2011,96(1):192-199.
[20]Deng TX,Wang ZhX,Deng JB et al. The Study of Sexual Difference Against Coldness[J]. Journal of Medical Research, 2011,40(4):45-46. (in Chinese)
邓同兴,王志新,邓锦波等.耐寒性的性别差异性研究 [J].医学研究杂志,2011,40(4):45-46.
[21]Westfall TC, Yang CL, Chen X, et al. A novel mechanism prevents the development of hyper tension during chronic cold stress[J]. Auton Autacoid Pharmacol, 2005, 25(4):171-177.
[22]Kaushik S, Kaur J. Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats [J]. Stress, 2005, 8(3):191-197.
[23]Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines [J]. Annu Rev Physiol, 2002, 64: 313-353.
[24]Malenka RC, Nicoll RA. Long term potentiation a decade of progress [J]. Science, 1999, 285 (5435):1870-1874.
[25]Harinath K, Malhotra AS, Pal K, et al. Autonomic nervous system and adrenal response to cold in man at antarctica[J]. Wilderness Environ Med, 2005,16(2):81-91.
[26]Arancibia S, Rage F, Astier H, et al. Neuroendocrine and autonomous mechanisms underlying thermoregulation in cold environment [J].Neuroendocrinology,1996,64(4):257-267.
[27]Smolander J, Leppluoto J, Westerlund T, et al. Effects of repeated whole-body cold exposures on serum concentrations of growth hormone, thyrotropin, prolactin and thyroid hormones in healthy women[J]. Cryobiology,2009,58(3):275-278.
[28]Hazell GG, Yao ST, Roper JA, et al. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues [J]. J Endocrinol,2009, 202(2): 223-236.
[29]Revankar CM, Mitchell HD, Field AS, et all. Sgnthetic estrogen derivatives demonstrate the functionality of intracellular GPR30[J]. ACS Chem Biol, 2007, 2(8): 536-544.
[30]Lebesgue D, Reyna-Neyra A, Huang X, et al. GPR30 differentially regulates short latency responses of luteinising hormone and prolactin secretion to oestradiol [J]. J Neuroendocrinol,2009, 21(9): 743-752.
[31]Farooque M, Suo Z, Arnold PM, et al. Gender-related differences in recovery of locomotor function after spinal cord injury in mice [J]. Spinal Cord, 2006, 44(3):182-187.
[32]Xu X, Tikuisis P, Gonzalez R, et al. Thermoregulatory model for prediction of long-term cold exposure[J]. Comput Biol Med, 2005,35(4):287-298.
[33]Brailoiu E,Dun SL,Brailoiu GC,et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system [J]. J Endocrinol, 2007,193(2): 311-321.
国家自然科学基金资助项目;自然科学基金资助项目
/
〈 |
|
〉 |